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CHAPTER

M O M E N T U M  A N A LY S I S 
O F  F L O W  S Y S T E M S

When dealing with engineering problems, it is desirable to obtain 
fast and accurate solutions at minimal cost. Most engineering 
problems, including those associated with fluid flow, can be ana-

lyzed using one of three basic approaches: differential, experimental, and 
control volume. In differential approaches, the problem is formulated accu-
rately using differential quantities, but the solution of the resulting differ-
ential equations is difficult, usually requiring the use of numerical methods 
with extensive computer codes. Experimental approaches complemented 
with dimensional analysis are highly accurate, but they are typically time
consuming and expensive. The finite control volume approach described in 
this chapter is remarkably fast and simple and usually gives answers that are 
sufficiently accurate for most engineering purposes. Therefore, despite the 
approximations involved, the basic finite control volume analysis performed 
with paper and pencil has always been an indispensable tool for engineers.
 In Chap. 5, the control volume mass and energy analysis of fluid flow 
systems was presented. In this chapter, we present the finite control volume 
momentum analysis of fluid flow problems. First we give an overview of 
Newton’s laws and the conservation relations for linear and angular momen-
tum. Then using the Reynolds transport theorem, we develop the linear 
momentum and angular momentum equations for control volumes and use 
them to determine the forces and torques associated with fluid flow.

6
OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Identify the various kinds of 
forces and moments acting on 
a control volume

■ Use control volume analysis to 
determine the forces associated 
with fluid flow

■ Use control volume analysis to 
determine the moments caused 
by fluid flow and the torque 
transmitted

Steady swimming of the jellyfish Aurelia aurita. 
Fluorescent dye placed directly upstream of the 
animal is drawn underneath the bell as the body 
relaxes and forms vortex rings below the animal 

as the body contracts and ejects fluid. The vortex 
rings simultaneously induce flows for both 

feeding and propulsion.
Adapted from Dabiri et al., J. Exp. Biol. 208: 1257–1265. 

Photo credit: Sean P. Colin and John H. Costello.
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6–1 ■ NEWTON’S LAWS
Newton’s laws are relations between motions of bodies and the forces act-
ing on them. Newton’s first law states that a body at rest remains at rest, 
and a body in motion remains in motion at the same velocity in a straight 
path when the net force acting on it is zero. Therefore, a body tends to pre-
serve its state of inertia. Newton’s second law states that the acceleration of 
a body is proportional to the net force acting on it and is inversely propor-
tional to its mass. Newton’s third law states that when a body exerts a force 
on a second body, the second body exerts an equal and opposite force on 
the first. Therefore, the direction of an exposed reaction force depends on 
the body taken as the system.
 For a rigid body of mass m, Newton’s second law is expressed as

Newton’s second law:  F
!
5 ma

!
5 m  

dV
!

dt
5

d(mV
!
)

dt
 (6–1)

where F
!
 is the net force acting on the body and a

→
 is the acceleration of the 

body under the influence of F
!
.

 The product of the mass and the velocity of a body is called the linear 
momentum or just the momentum of the body. The momentum of a rigid 
body of mass m moving with velocity V

!
 is mV

!
 (Fig. 6–1). Then Newton’s 

second law expressed in Eq. 6–1 can also be stated as the rate of change 
of the momentum of a body is equal to the net force acting on the body 
(Fig. 6–2). This statement is more in line with Newton’s original statement 
of the second law, and it is more appropriate for use in fluid mechanics 
when studying the forces generated as a result of velocity changes of fluid 
streams. Therefore, in fluid mechanics, Newton’s second law is usually 
referred to as the linear momentum equation.
 The momentum of a system remains constant only when the net force 
acting on it is zero, and thus the momentum of such a system is conserved. 
This is known as the conservation of momentum principle. This principle 
has proven to be a very useful tool when analyzing collisions such as those 
between balls; between balls and rackets, bats, or clubs; and between atoms 
or subatomic particles; and explosions such as those that occur in rockets, 
missiles, and guns. In fluid mechanics, however, the net force acting on a 
system is typically not zero, and we prefer to work with the linear momentum 
equation rather than the conservation of momentum principle.
 Note that force, acceleration, velocity, and momentum are vector quanti-
ties, and as such they have direction as well as magnitude. Also, momen-
tum is a constant multiple of velocity, and thus the direction of momentum 
is the direction of velocity as shown in Fig 6–1. Any vector equation can 
be written in scalar form for a specified direction using magnitudes, e.g., 
Fx 5 max 5 d(mVx)/dt in the x-direction.
 The counterpart of Newton’s second law for rotating rigid bodies is ex -
pressed as  M

!
 5 Ia

→
, where  M

!
 is the net moment or torque applied on the 

body, I is the moment of inertia of the body about the axis of rotation, and 
a
→

 is the angular acceleration. It can also be expressed in terms of the rate of 
change of angular momentum d H

!
/dt as

Angular momentum equation:  M
!
5 I  a

!
5 I  

d v
!

dt
5

d(I v
!
)

dt
5

d H
!

dt
 (6–2)

V

mV
m

m

FIGURE 6–1
Linear momentum is the product of 
mass and velocity, and its direction 
is the direction of velocity.

Net forceNet force

Rate of changeRate of change
of momentumof momentum

→
F = ma= ma = m= m

→ VVd

dtdt dtdt
=

d(m m  )
→ →

FIGURE 6–2
Newton’s second law is also expressed 
as the rate of change of the momentum 
of a body is equal to the net force 
acting on it.
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where v
→

 is the angular velocity. For a rigid body rotating about a fixed x-axis, 
the angular momentum equation is written in scalar form as

Angular momentum about x-axis: Mx 5 Ix  
dvx

dt
5

dHx

dt
 (6–3)

The angular momentum equation can be stated as the rate of change of 
the angular momentum of a body is equal to the net torque acting on it 
(Fig. 6–3).
 The total angular momentum of a rotating body remains constant when 
the net torque acting on it is zero, and thus the angular momentum of such 
systems is conserved. This is known as the conservation of angular momen-
tum principle and is expressed as Iv 5 constant. Many interesting phenom-
ena such as ice skaters spinning faster when they bring their arms close to 
their bodies and divers rotating faster when they curl after the jump can be 
explained easily with the help of the conservation of angular momentum 
principle (in both cases, the moment of inertia I is decreased and thus the 
angular velocity v is increased as the outer parts of the body are brought 
closer to the axis of rotation).

6–2 ■ CHOOSING A CONTROL VOLUME
We now briefly discuss how to wisely select a control volume. A control 
volume can be selected as any arbitrary region in space through which fluid 
flows, and its bounding control surface can be fixed, moving, and even 
deforming during flow. The application of a basic conservation law is a 
systematic procedure for bookkeeping or accounting of the quantity under 
consideration, and thus it is extremely important that the boundaries of the 
control volume are well defined during an analysis. Also, the flow rate of 
any quantity into or out of a control volume depends on the flow velocity 
relative to the control surface, and thus it is essential to know if the control 
volume remains at rest during flow or if it moves.
 Many flow systems involve stationary hardware firmly fixed to a station-
ary surface, and such systems are best analyzed using fixed control volumes. 
When determining the reaction force acting on a tripod holding the nozzle 
of a hose, for example, a natural choice for the control volume is one that 
passes perpendicularly through the nozzle exit flow and through the bottom 
of the tripod legs (Fig. 6–4a). This is a fixed control volume, and the water 
velocity relative to a fixed point on the ground is the same as the water 
velocity relative to the nozzle exit plane.
 When analyzing flow systems that are moving or deforming, it is usu-
ally more convenient to allow the control volume to move or deform. When 
determining the thrust developed by the jet engine of an airplane cruising at 
constant velocity, for example, a wise choice of control volume is one that 
encloses the airplane and cuts through the nozzle exit plane (Fig. 6–4b). The 
control volume in this case moves with velocity V

!
CV, which is identical to 

the cruising velocity of the airplane relative to a fixed point on earth. When 
determining the flow rate of exhaust gases leaving the nozzle, the proper 
velocity to use is the velocity of the exhaust gases relative to the nozzle exit 
plane, that is, the relative velocity V

!
r . Since the entire control volume moves 

at velocity V
!
CV, the relative velocity becomes V

!
r 5 V

!
 2 V

!
CV, where V

!
 is the 

absolute velocity of the exhaust gases, i.e., the velocity relative to a fixed 

α d(I     )
M = I= I     = I= I

d

dtdt dtdt
=

ω ω dHdH

dtdt

ω ω 
=

Net torqueNet torque

Rate of changeRate of change
of angular momentumof angular momentum

→ →
→ → →

FIGURE 6–3
The rate of change of the angular 
momentum of a body is equal to 

the net torque acting on it.
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point on earth. Note that V
!
r is the fluid velocity expressed relative to a coor-

dinate system moving with the control volume. Also, this is a vector equa-
tion, and velocities in opposite directions have opposite signs. For example, 
if the airplane is cruising at 500 km/h to the left, and the velocity of the 
exhaust gases is 800 km/h to the right relative to the ground, the velocity of 
the exhaust gases relative to the nozzle exit is

V
!
r 5 V

!
2 V

!
CV 5 800  i  

!
2 (2500  i  

!
 ) 5 1300  i  

!
 km/h

That is, the exhaust gases leave the nozzle at 1300 km/h to the right rela-
tive to the nozzle exit (in the direction opposite to that of the airplane); this 
is the velocity that should be used when evaluating the outflow of exhaust 
gases through the control surface (Fig. 6–4b). Note that the exhaust gases 
would appear motionless to an observer on the ground if the relative veloc-
ity were equal in magnitude to the airplane velocity.
 When analyzing the purging of exhaust gases from a reciprocating inter-
nal combustion engine, a wise choice for the control volume is one that 
comprises the space between the top of the piston and the cylinder head 
(Fig. 6–4c). This is a deforming control volume, since part of the control 
surface moves relative to other parts. The relative velocity for an inlet or 
outlet on the deforming part of a control surface (there are no such inlets 
or outlets in Fig. 6–4c) is then given by V

!
r 5 V

!
 2 V

!
CS where V

!
 is the absolute 

fluid velocity and V
!
CS is the control surface velocity, both relative to a fixed 

point outside the control volume. Note that V
!
CS 5 V

!
CV for moving but 

nondeforming control volumes, and V
!
CS 5 V

!
CV 5 0 for fixed ones.

6–3 ■ FORCES ACTING ON A CONTROL VOLUME
The forces acting on a control volume consist of body forces that act 
throughout the entire body of the control volume (such as gravity, electric, 
and magnetic forces) and surface forces that act on the control surface (such 
as pressure and viscous forces and reaction forces at points of contact). Only 
external forces are considered in the analysis. Internal forces (such as the 
pressure force between a fluid and the inner surfaces of the flow section) 
are not considered in a control volume analysis unless they are exposed by 
passing the control surface through that area.
 In control volume analysis, the sum of all forces acting on the control vol-
ume at a particular instant in time is represented by Σ F

!
 and is expressed as

Total force acting on control volume: aF
!
5 aF

!
body 1 aF

!
surface (6–4)

Body forces act on each volumetric portion of the control volume. The body 
force acting on a differential element of fluid of volume dV within the con-
trol volume is shown in Fig. 6–5, and we must perform a volume integral to 
account for the net body force on the entire control volume. Surface forces 
act on each portion of the control surface. A differential surface element 
of area dA and unit outward normal n

→
 on the control surface is shown in 

Fig. 6–5, along with the surface force acting on it. We must perform an area 
integral to obtain the net surface force acting on the entire control surface. 
As sketched, the surface force may act in a direction independent of that of 
the outward normal vector.

V

V

(a)

(b)

(c)

CV

V

V

V

CV

r

r
Moving control volume

Deforming
control volume

Fixed control volume

x

x

y

VCS

→

→

→

→

→

→

FIGURE 6–4
Examples of (a) fixed, (b) moving, and 
(c) deforming control volumes.
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 The most common body force is that of gravity, which exerts a down-
ward force on every differential element of the control volume. While other 
body forces, such as electric and magnetic forces, may be important in some 
analyses, we consider only gravitational forces here.
 The differential body force d F

!
body 5 d F

!
gravity acting on the small fluid ele-

ment shown in Fig. 6–6 is simply its weight,

Gravitational force acting on a fluid element: dF
!
gravity 5 rg

!
 dV  (6–5)

where r is the average density of the element and g
→

 is the gravitational 
vector. In Cartesian coordinates we adopt the convention that g

→
 acts in the 

negative z-direction, as in Fig. 6–6, so that

Gravitational vector in Cartesian coordinates: g
!
5 2gk

!
 (6–6)

Note that the coordinate axes in Fig. 6–6 are oriented so that the gravity 
vector acts downward in the 2z-direction. On earth at sea level, the gravita-
tional constant g is equal to 9.807 m/s2. Since gravity is the only body force 
being considered, integration of Eq. 6–5 yields

Total body force acting on control volume: aF
!
body 5 #

CV
 rg
!
 dV 5 mCVg

!
 (6–7)

 Surface forces are not as simple to analyze since they consist of both 
normal and tangential components. Furthermore, while the physical force 
acting on a surface is independent of orientation of the coordinate axes, the 
description of the force in terms of its coordinate components changes with 
orientation (Fig. 6–7). In addition, we are rarely fortunate enough to have 
each of the control surfaces aligned with one of the coordinate axes. While 
not desiring to delve too deeply into tensor algebra, we are forced to define 
a second-order tensor called the stress tensor sij in order to adequately 
describe the surface stresses at a point in the flow,

Stress tensor in Cartesian coordinates: sij 5 £sxx

syx

szx

sxy

syy

szy

sxz

syz

szz

 (6–8)

The diagonal components of the stress tensor, sxx, syy, and szz, are called 
normal stresses; they are composed of pressure (which always acts inwardly 
normal) and viscous stresses. Viscous stresses are discussed in more detail 
in Chap. 9. The off-diagonal components, sxy, szx, etc., are called shear 
stresses; since pressure can act only normal to a surface, shear stresses are 
composed entirely of viscous stresses.
 When the face is not parallel to one of the coordinate axes, mathematical 
laws for axes rotation and tensors can be used to calculate the normal and 
tangential components acting at the face. In addition, an alternate notation 
called tensor notation is convenient when working with tensors but is usu-
ally reserved for graduate studies. (For a more in-depth analysis of tensors 
and tensor notation see, for example, Kundu and Cohen, 2011.)
 In Eq. 6–8, sij is defined as the stress (force per unit area) in the j-direction 
acting on a face whose normal is in the i-direction. Note that i and j are merely 
indices of the tensor and are not the same as unit vectors  i  

!
 and  j  

!
. For 

example, sxy is defined as positive for the stress pointing in the y-direction 
on a face whose outward normal is in the x-direction. This component of the 

body

Control volume (CV)

Control surface (CS)

n

dFbody

surfacedF

dA

dV

→

→

→

g
→

FIGURE 6–5
The total force acting on a control 

volume is composed of body forces 
and surface forces; body force is 

shown on a differential volume 
element, and surface force is shown 

on a differential surface element.

g

dFbody = dFgravity = rg dV
z, k

y, j

x, i

dy

dz

dx

→

→→→

→

→

→

dV,r

FIGURE 6–6
The gravitational force acting on 

a differential volume element of fluid 
is equal to its weight; the axes are 

oriented so that the gravity vector acts 
downward in the negative z-direction.
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stress tensor, along with the other eight components, is shown in Fig. 6–8 for 
the case of a differential fluid element aligned with the axes in Cartesian coor-
dinates. All the components in Fig. 6–8 are shown on positive faces (right, 
top, and front) and in their positive orientation by definition. Positive stress 
components on the opposing faces of the fluid element (not shown) point in 
exactly opposite directions.
 The dot product of a second-order tensor and a vector yields a second 
vector; this operation is often called the contracted product or the inner 
product of a tensor and a vector. In our case, it turns out that the inner 
product of the stress tensor sij and the unit outward normal vector n

→
 of a 

differential surface element yields a vector whose magnitude is the force per 
unit area acting on the surface element and whose direction is the direction 
of the surface force itself. Mathematically we write

Surface force acting on a differential surface element: dF
!
surface 5 sij  

· n
!
 dA  (6–9)

Finally, we integrate Eq. 6–9 over the entire control surface,

Total surface force acting on control surface:  aF
!
surface 5 #

CS

 sij  
· n
!
 dA  (6–10)

Substitution of Eqs. 6–7 and 6–10 into Eq. 6–4 yields

 aF
!
5 aF

!
body 1 aF

!
surface 5 #

CV

rg
!
 dV 1 #

CS

 sij  
· n
!
 dA  (6–11)

 This equation turns out to be quite useful in the derivation of the differ-
ential form of conservation of linear momentum, as discussed in Chap. 9. 
For practical control volume analysis, however, it is rare that we need to use 
Eq. 6–11, especially the cumbersome surface integral that it contains.
 A careful selection of the control volume enables us to write the total 
force acting on the control volume, Σ F

!
, as the sum of more readily available 

quantities like weight, pressure, and reaction forces. We recommend the fol-
lowing for control volume analysis:

Total force: aF
!
5 aF

!
gravity 1 aF

!
pressure 1 aF

!
viscous 1 aF

!
other (6–12)

 total force body force surface forces

The first term on the right-hand side of Eq. 6–12 is the body force weight, 
since gravity is the only body force we are considering. The other three 
terms combine to form the net surface force; they are pressure forces, vis-
cous forces, and “other” forces acting on the control surface. Σ F

!
other is com-

posed of reaction forces required to turn the flow; forces at bolts, cables, 
struts, or walls through which the control surface cuts; etc.
 All these surface forces arise as the control volume is isolated from its 
surroundings for analysis, and the effect of any detached object is accounted 
for by a force at that location. This is similar to drawing a free-body dia-
gram in your statics and dynamics classes. We should choose the control 
volume such that forces that are not of interest remain internal, and thus 
they do not complicate the analysis. A well-chosen control volume exposes 
only the forces that are to be determined (such as reaction forces) and a 
minimum number of other forces.

Control
surface

y

x

(a)

(b)

dFsurface

dFsurface, y

dFsurface, x

dFsurface, normal

n

dFsurface, tangential

dA

Control
surface

y

x

dFsurface

dFsurface, y

dFsurface, x

dFsurface, normal

n

dFsurface, tangential

dA

→

→

→

→

FIGURE 6–7
When coordinate axes are rotated (a) 
to (b), the components of the surface 
force change, even though the force 
itself remains the same; only two 
dimensions are shown here.
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 A common simplication in the application of Newton’s laws of motion is 
to subtract the atmospheric pressure and work with gage pressures. This is 
because atmospheric pressure acts in all directions, and its effect cancels out 
in every direction (Fig. 6–9). This means we can also ignore the pressure 
forces at outlet sections where the fluid is discharged at subsonic velocities 
to the atmosphere since the discharge pressures in such cases are very near 
atmospheric pressure.
 As an example of how to wisely choose a control volume, consider con-
trol volume analysis of water flowing steadily through a faucet with a par-
tially closed gate valve spigot (Fig. 6–10). It is desired to calculate the net 
force on the flange to ensure that the flange bolts are strong enough. There 
are many possible choices for the control volume. Some engineers restrict 
their control volumes to the fluid itself, as indicated by CV A (the purple 
control volume) in Fig 6–10. With this control volume, there are pressure 
forces that vary along the control surface, there are viscous forces along 
the pipe wall and at locations inside the valve, and there is a body force, 
namely, the weight of the water in the control volume. Fortunately, to cal-
culate the net force on the flange, we do not need to integrate the pressure 
and viscous stresses all along the control surface. Instead, we can lump the 
unknown pressure and viscous forces together into one reaction force, repre-
senting the net force of the walls on the water. This force, plus the weight of 
the faucet and the water, is equal to the net force on the flange. (We must be 
very careful with our signs, of course.)
 When choosing a control volume, you are not limited to the fluid alone. 
Often it is more convenient to slice the control surface through solid objects 
such as walls, struts, or bolts as illustrated by CV B (the red control vol-
ume) in Fig. 6–10. A control volume may even surround an entire object, 
like the one shown here. Control volume B is a wise choice because we are 
not concerned with any details of the flow or even the geometry inside the 
control volume. For the case of CV B, we assign a net reaction force act-
ing at the portions of the control surface that slice through the flange bolts. 
Then, the only other things we need to know are the gage pressure of 
the water at the flange (the inlet to the control volume) and the weights of 
the water and the faucet assembly. The pressure everywhere else along the 
control surface is atmospheric (zero gage pressure) and cancels out. This 
problem is revisited in Section 6–4, Example 6–7.

6–4 ■ THE LINEAR MOMENTUM EQUATION
Newton’s second law for a system of mass m subjected to net force Σ F

!
 is 

expressed as

 aF
!
5 ma

!
5 m 

dV
!

dt
5

d

dt
 (mV

!
) (6–13)

where mV
!
 is the linear momentum of the system. Noting that both the 

density and velocity may change from point to point within the system, 
Newton’s second law can be expressed more generally as

 aF
!
5

d

dt#sys
 rV
!
 dV  (6–14)

dy

dz

dx

sxz

sxx

sxy

syz

syy

syx

szy
szx

szz

y

x
z

FIGURE 6–8
Components of the stress tensor in 
Cartesian coordinates on the right, 

top, and front faces.

FR

P1

W

Patm

Patm

P1 (gage)

With atmospheric
pressure considered

With atmospheric
pressure cancelled out

FR

W

FIGURE 6–9
Atmospheric pressure acts in all 

directions, and thus it can be ignored 
when performing force balances since 

its effect cancels out in every direction.

Wfaucet

Wwater

CV B

Out

Spigot

In

Bolts

x

z

CV A

FIGURE 6–10
Cross section through a faucet 

assembly, illustrating the importance 
of choosing a control volume wisely; 

CV B is much easier to work with 
than CV A.
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where rV
!
  dV is the momentum of a differential element dV, which has mass 

dm 5 r  dV. Therefore, Newton’s second law can be stated as the sum of 
all external forces acting on a system is equal to the time rate of change 
of linear momentum of the system. This statement is valid for a coordinate 
system that is at rest or moves with a constant velocity, called an inertial 
coordinate system or inertial reference frame. Accelerating systems such as 
aircraft during takeoff are best analyzed using noninertial (or accelerating) 
coordinate systems fixed to the aircraft. Note that Eq. 6–14 is a vector rela-
tion, and thus the quantities F

!
 and V

!
 have direction as well as magnitude.

 Equation 6–14 is for a given mass of a solid or fluid and is of limited use 
in fluid mechanics since most flow systems are analyzed using control vol-
umes. The Reynolds transport theorem developed in Section 4–6 provides 
the necessary tools to shift from the system formulation to the control vol-
ume formulation. Setting b 5 V

!
 and thus B 5 mV

!
, the Reynolds transport 

theorem is expressed for linear momentum as (Fig. 6–11)

 
d(mV

!
)sys

dt
5

d

dt
 #

CV
 rV
!
 dV 1 #

CS
 rV
!
 (V
!
r · n
!
 ) dA (6–15)

The left-hand side of this equation is, from Eq. 6–13, equal to Σ F
!
. Substi-

tuting, the general form of the linear momentum equation that applies to 
fixed, moving, or deforming control volumes is

General: aF
!
5

d

dt
 #

CV
 rV
!
 dV 1 #

CS
 rV
!
(V
!
r· 

n
!
 ) dA (6–16)

which is stated in words as£The sum of all

external forces

acting on a CV

5 £ The time rate of change

of the linear momentum

of the contents of the CV

1 £ The net flow rate of

linear momentum out of the

control surface by mass flow

Here V
!
r 5 V

!
 2 V

!
CS is the fluid velocity relative to the control surface (for 

use in mass flow rate calculations at all locations where the fluid crosses the 
control surface), and V

!
 is the fluid velocity as viewed from an inertial refer-

ence frame. The product r(V
!
r·n

→
) dA represents the mass flow rate through 

area element dA into or out of the control volume.
 For a fixed control volume (no motion or deformation of the control volume), 
V
!
r 5 V

!
 and the linear momentum equation becomes

Fixed CV: aF
!
5

d

dt
 #

CV
 rV
!
 dV 1 #

CS
 rV
!
(V
!
· n
!
 ) dA (6–17)

Note that the momentum equation is a vector equation, and thus each term 
should be treated as a vector. Also, the components of this equation can be 
resolved along orthogonal coordinates (such as x, y, and z in the Cartesian 
coordinate system) for convenience. The sum of forces Σ F

!
 in most cases 

consists of weights, pressure forces, and reaction forces (Fig. 6–12). The 
momentum equation is commonly used to calculate the forces (usually on 
support systems or connectors) induced by the flow.

= +rb dV

B = mV

dBsys

dt
V

d

dt
CV
# rb(  r · n ) dA

CS
#

= +rV dV
d(mV )sys

dt
V

d

dt
CV
# rV(  r · n ) dA

CS
#

b = V b = V

→→

→ →

→
→ → → →

→

FIGURE 6–11
The linear momentum equation 
is obtained by replacing B in the 
Reynolds transport theorem by 
the momentum mV

!
, and b by 

the momentum per unit mass V
!
.

FR1

FR2P2,gageA2 P1,gageA1

A2

An 180° elbow supported by the ground

(Pressure
force)

CS(Reaction
force)

(Reaction force)

A1

W (Weight)

FIGURE 6–12
In most flow systems, the sum of 
forces Σ F

!
 consists of weights, 

pressure forces, and reaction forces. 
Gage pressures are used here since 
atmospheric pressure cancels out on 
all sides of the control surface.
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Special Cases
Most momentum problems considered in this text are steady. During steady 
flow, the amount of momentum within the control volume remains constant, 
and thus the time rate of change of linear momentum of the contents of the 
control volume (the second term of Eq. 6–16) is zero. Thus,

Steady flow: aF
!
5 #

CS
 rV
!
 (V
!
r· 

n
!
 ) dA (6–18)

For a case in which a non-deforming control volume moves at constant 
velocity (an inertial reference frame), the first V

!
 in Eq. 6-18 may also be 

taken relative to the moving control surface.
 While Eq. 6–17 is exact for fixed control volumes, it is not always con-
venient when solving practical engineering problems because of the inte-
grals. Instead, as we did for conservation of mass, we would like to rewrite 
Eq. 6–17 in terms of average velocities and mass flow rates through inlets 
and outlets. In other words, our desire is to rewrite the equation in algebraic 
rather than integral form. In many practical applications, fluid crosses the 
boundaries of the control volume at one or more inlets and one or more out-
lets, and carries with it some momentum into or out of the control volume. 
For simplicity, we always draw our control surface such that it slices normal 
to the inflow or outflow velocity at each such inlet or outlet (Fig. 6–13).
 The mass flow rate m

.
  into or out of the control volume across an inlet or 

outlet at which r is nearly constant is

Mass flow rate across an inlet or outlet:  m# 5 #
Ac

 r(V
!
·n
!
 ) dAc 5 rVavgAc (6–19)

Comparing Eq. 6–19 to Eq. 6–17, we notice an extra velocity in the control 
surface integral of Eq. 6–17. If V

!
 were uniform (V

!
 5 V

!
avg) across the inlet 

or outlet, we could simply take it outside the integral. Then we could write 
the rate of inflow or outflow of momentum through the inlet or outlet in 
simple algebraic form,

Momentum flow rate across a uniform inlet or outlet:

 #
Ac

 rV
!
(V
!
· n
!
 ) dAc 5 rVavg AcV

!
avg 5 m

#
V
!
avg (6–20)

The uniform flow approximation is reasonable at some inlets and outlets, 
e.g., the well-rounded entrance to a pipe, the flow at the entrance to a wind 
tunnel test section, and a slice through a water jet moving at nearly uniform 
speed through air (Fig. 6–14). At each such inlet or outlet, Eq. 6–20 can be 
applied directly.

Momentum-Flux Correction Factor, B
Unfortunately, the velocity across most inlets and outlets of practical engi-
neering interest is not uniform. Nevertheless, it turns out that we can still 
convert the control surface integral of Eq. 6–17 into algebraic form, but a 
dimensionless correction factor b, called the momentum-flux correction 
factor, is required, as first shown by the French scientist Joseph Boussinesq 

Vavg,4m4,⋅

m3,⋅ Vavg,3
→

→Vavg,5m5,⋅ →

→

→

Vavg,1m1,⋅

Vavg,2m2,⋅

In

In

Out

Out

Out

Fixed
control
volume

FIGURE 6–13
In a typical engineering problem, 

the control volume may contain 
multiple inlets and outlets; at each 

inlet or outlet we define the mass flow 
rate m

.
 and the average velocity V

!
avg.

243-290_cengel_ch06.indd   251 12/17/12   12:06 PM



252
MOMENTUM ANALYSIS OF FLOW SYSTEMS

(1842–1929). The algebraic form of Eq. 6–17 for a fixed control volume is 
then written as

 aF
!
5

d

dt
 #

CV
 rV
!
 dV 1 a

out
bm# V

!
avg 2 a

in
bm# V

!
avg (6–21)

where a unique value of momentum-flux correction factor is applied to 
each inlet and outlet in the control surface. Note that b 5 1 for the case of 
uniform flow over an inlet or outlet, as in Fig. 6–14. For the general case, 
we define b such that the integral form of the momentum flux into or out 
of the control surface at an inlet or outlet of cross-sectional area Ac can be 
expressed in terms of mass flow rate m

.
 through the inlet or outlet and aver-

age velocity V
!
avg through the inlet or outlet,

Momentum flux across an inlet or outlet:   #
Ac

 rV
!
(V
!
· n
!
 ) dAc 5 bm# V

!
avg (6–22)

For the case in which density is uniform over the inlet or outlet and V
!
 is in 

the same direction as V
!
avg over the inlet or outlet, we solve Eq. 6–22 for b,

 b 5

#
Ac

 rV(V
!
·n
!
 ) dAc

m# Vavg

5

#
Ac

 rV(V
!
· n
!
 ) dAc

rVavg AcVavg

 (6–23)

where we have substituted rVavg Ac for m· in the denominator. The densi-
ties cancel and since Vavg is constant, it can be brought inside the integral. 
Furthermore, if the control surface slices normal to the inlet or outlet area, 
(V
!
·n

→
) dAc 5 V dAc. Then, Eq. 6–23 simplifies to

Momentum-flux correction factor:    b 5
1

Ac

 #
Ac

 a V

Vavg

b2

 dAc (6–24)

It may be shown that b is always greater than or equal to unity.

EXAMPLE 6–1     Momentum-Flux Correction Factor 
for Laminar Pipe Flow

Consider laminar flow through a very long straight section of round pipe. It 

is shown in Chap. 8 that the velocity profile through a cross-sectional area of 

the pipe is parabolic (Fig. 6–15), with the axial velocity component given by

 V 5 2Vavga1 2
r2

R 2b  (1)

where R is the radius of the inner wall of the pipe and Vavg is the average 

velocity. Calculate the momentum-flux correction factor through a cross sec-

tion of the pipe for the case in which the pipe flow represents an outlet of 

the control volume, as sketched in Fig. 6–15.

SOLUTION  For a given velocity distribution we are to calculate the momentum-

flux correction factor.

FIGURE 6–14
Examples of inlets or outlets 
in which the uniform flow 
approximation is reasonable: 
(a) the well-rounded entrance to 
a pipe, (b) the entrance to a wind 
tunnel test section, and (c) a slice 
through a free water jet in air.

CV

(a)

V   Vavg

CV

(b)

V   Vavg

CV

Nozzle

(c)

V   Vavg
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Assumptions  1 The flow is incompressible and steady. 2 The control volume 

slices through the pipe normal to the pipe axis, as sketched in Fig. 6–15.

Analysis  We substitute the given velocity profile for V in Eq. 6–24 and inte-

grate, noting that dAc 5 2pr dr,

 b 5
1

Ac

 #
Ac

 a V

Vavg

b2

 dAc 5
4

pR2 #
R

0
 a1 2

r2

R2b2

2pr dr (2)

Defining a new integration variable y 5 1 2 r 2/R2 and thus dy 5 22r dr /R 2 

(also, y 5 1 at r 5 0, and y 5 0 at r 5 R) and performing the integra-

tion, the momentum-flux correction factor for fully developed laminar flow 

becomes

Laminar flow: b 5 24 #
0

1
 y2 dy 5 24 c y3

3
d 0

1

5
4

3
 (3)

Discussion  We have calculated b for an outlet, but the same result would 

have been obtained if we had considered the cross section of the pipe as an 

inlet to the control volume.

 From Example 6–1 we see that b is not very close to unity for fully devel-
oped laminar pipe flow, and ignoring b could potentially lead to significant 
error. If we were to perform the same kind of integration as in Example 6–1 
but for fully developed turbulent rather than laminar pipe flow, we would 
find that b ranges from about 1.01 to 1.04. Since these values are so close 
to unity, many practicing engineers completely disregard the momentum-
flux correction factor. While the neglect of b in turbulent flow calculations 
may have an insignificant effect on the final results, it is wise to keep it in 
our equations. Doing so not only improves the accuracy of our calculations, 
but reminds us to include the momentum-flux correction factor when solv-
ing laminar flow control volume problems.

For turbulent flow b may have an insignificant effect at inlets and outlets, but 
for laminar flow b may be important and should not be neglected. It is wise 
to include b in all momentum control volume problems.

Steady Flow
If the flow is also steady, the time derivative term in Eq. 6–21 vanishes and 
we are left with

Steady linear momentum equation: aF
!
5 a

out
bm# V

!
2 a

in
b m# V

!
 (6–25)

where we have dropped the subscript “avg” from average velocity. Equa-
tion 6–25 states that the net force acting on the control volume during steady 
flow is equal to the difference between the rates of outgoing and incoming 
momentum flows. This statement is illustrated in Fig. 6–16. It can also be 
expressed for any direction, since Eq. 6–25 is a vector equation.

Vavg

VR
r

CV

FIGURE 6–15
Velocity profile over a cross section 

of a pipe in which the flow is fully 
developed and laminar.

In

In

Out

out in

Fixed
control
volume

Out

Out
V3b3m3

⋅

Vbm⋅
→

→

V4b4m4
⋅V5b5m5

⋅ →→

V2b2m2
⋅ →

V1b1m1
⋅ →

Σ ΣF = Vbm⋅
→Σ

→
–

F
→Σ

FIGURE 6–16
The net force acting on the control 

volume during steady flow is equal to 
the difference between the outgoing 

and the incoming momentum fluxes.

243-290_cengel_ch06.indd   253 12/17/12   12:06 PM



254
MOMENTUM ANALYSIS OF FLOW SYSTEMS

Steady Flow with One Inlet and One Outlet
Many practical engineering problems involve just one inlet and one outlet 
(Fig. 6–17). The mass flow rate for such single-stream systems remains 
constant, and Eq. 6–25 reduces to

One inlet and one outlet: aF
!
5 m # (b2V

!
2 2 b1V

!
1) (6–26)

where we have adopted the usual convention that subscript 1 implies the 
inlet and subscript 2 the outlet, and V

!
1 and V

!
2 denote the average velocities 

across the inlet and outlet, respectively.
 We emphasize again that all the preceding relations are vector equations, and 
thus all the additions and subtractions are vector additions and subtractions. 
Recall that subtracting a vector is equivalent to adding it after reversing its 
direction (Fig. 6–18). When writing the momentum equation for a specified 
coordinate direction (such as the x-axis), we use the projections of the vec-
tors on that axis. For example, Eq. 6–26 is written along the x-coordinate as

Along x-coordinate: aFx 5 m# (b2V2, x 2 b1V1, x) (6–27)

where ΣFx is the vector sum of the x-components of the forces, and V2, x 
and V1, x are the x-components of the outlet and inlet velocities of the fluid 
stream, respectively. The force or velocity components in the positive 
x-direction are positive quantities, and those in the negative x-direction are 
negative quantities. Also, it is good practice to take the direction of unknown 
forces in the positive directions (unless the problem is very straightforward). 
A negative value obtained for an unknown force indicates that the assumed 
direction is wrong and should be reversed.

Flow with No External Forces
An interesting situation arises when there are no external forces (such as 
weight, pressure, and reaction forces) acting on the body in the direction of 
motion—a common situation for space vehicles and satellites. For a control 
volume with multiple inlets and outlets, Eq. 6–21 reduces in this case to

No external forces: 0 5
d(mV

!
 )CV

dt
1 a

out
bm# V

!
2 a

in
bm# V

!
 (6–28)

This is an expression of the conservation of momentum principle, which 
is  stated in words as in the absence of external forces, the rate of change 
of the momentum of a control volume is equal to the difference between the 
rates of incoming and outgoing momentum flow rates.
 When the mass m of the control volume remains nearly constant, the first 
term of Eq. 6–28 becomes simply mass times acceleration, since

 
d(mV

!
)CV

dt
5 mCV 

dV
!
CV

dt
5 (ma

!
 )CV 5 mCVa

!
 

Therefore, the control volume in this case can be treated as a solid body (a 
fixed-mass system) with a net thrusting force (or just thrust) of 

Thrust: F
!
thrust 5 mbodya

!
5a

in
bm
#
V
!
2 a

out
bm
#
V
!
 (6– 29)

acting on the body. In Eq 6–29, fluid velocities are relative to an inertial 
reference frame—that is, a coordinate system that is fixed in space or is 

V2b2m⋅

V1b1m⋅
In

Out

Fixed
control
volume

ΣF2

1

m⋅
→→ΣF = (b2V2 – b1V1)

→

→

→

→

FIGURE 6–17
A control volume with only one inlet 
and one outlet.

(Reaction force)

Support

Water flow CS

Note: V2 ≠ V1 even if |V2| = |V1|

u

u
FR

FR
→

→ → → →

V1b1m⋅
→

V2b2m⋅
→

V2b2m⋅
→

V1–b1m⋅
→

FIGURE 6–18
The determination by vector addition of 
the reaction force on the support caused 
by a change of direction of water.
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moving uniformly at constant velocity on a straight path. When analyzing the 
motion of bodies moving at constant velocity on a straight path, it is conve-
nient to choose an inertial reference frame that moves with the body at the 
same velocity on the same path. In this case the velocities of fluid streams 
relative to the inertial reference frame are identical to the velocities relative to 
the moving body, which are much easier to apply. This approach, while not 
strictly valid for noninertial reference frames, can also be used to calculate the 
initial acceleration of a space vehicle when its rocket is fired (Fig. 6–19).
 Recall that thrust is a mechanical force typically generated through the 
reaction of an accelerating fluid. In the jet engine of an aircraft, for exam-
ple, hot exhaust gases are accelerated by the action of expansion and out-
flow of gases through the back of the engine, and a thrusting force is pro-
duced by a reaction in the opposite direction. The generation of thrust is 
based on Newton’s third law of motion, which states that for every action 
at a point there is an equal and opposite reaction. In the case of a jet 
engine, if the engine exerts a force on exhaust gases, then the exhaust gases 
exert an equal force on the engine in the opposite direction. That is, the 
pushing force exerted on the departing gases by the engine is equal to the 
thrusting force the departing gases exert on the remaining mass of the air-
craft in the opposite direction F

!
thrust 5 2F

!
push. On the free-body diagram 

of an aircraft, the effect of outgoing exhaust gases is accounted for by the 
insertion of a force in the opposite direction of motion of the exhaust gases.

EXAMPLE 6–2    The Force to Hold a Deflector Elbow in Place

A reducing elbow is used to deflect water flow at a rate of 14 kg/s in a 

horizontal pipe upward 30° while accelerating it (Fig. 6–20). The elbow dis-

charges water into the atmosphere. The cross-sectional area of the elbow 

is 113 cm2 at the inlet and 7 cm2 at the outlet. The elevation difference 

between the centers of the outlet and the inlet is 30 cm. The weight of the 

elbow and the water in it is considered to be negligible. Determine (a) the 

gage pressure at the center of the inlet of the elbow and (b) the anchoring 

force needed to hold the elbow in place.

SOLUTION  A reducing elbow deflects water upward and discharges it to the 

atmosphere. The pressure at the inlet of the elbow and the force needed to 

hold the elbow in place are to be determined.

Assumptions  1 The flow is steady, and the frictional effects are negligible. 

2 The weight of the elbow and the water in it is negligible. 3 The water is 

discharged to the atmosphere, and thus the gage pressure at the outlet is 

zero. 4 The flow is turbulent and fully developed at both the inlet and outlet 

of the control volume, and we take the momentum-flux correction factor to 

be b 5 1.03 (as a conservative estimate) at both the inlet and the outlet.

Properties  We take the density of water to be 1000 kg/m3.

Analysis  (a) We take the elbow as the control volume and designate the 

inlet by 1 and the outlet by 2. We also take the x- and z-coordinates as 

shown. The continuity equation for this one-inlet, one-outlet, steady-flow sys-

tem is m
.
1 5 m

.
2 5 m

.
 5 14 kg/s. Noting that m

.
 5 rAV, the inlet and outlet 

velocities of water are

 V1 5
m
#

rA1

5
14 kg/s

(1000 kg/m3)(0.0113 m2)
5 1.24 m/s 

L = 2 m
V0 = 2000 m/s

FIGURE 6–19
The thrust needed to lift the space 
shuttle is generated by the rocket 
engines as a result of momentum 

change of the fuel as it is accelerated 
from about zero to an exit speed of 

about 2000 m/s after combustion.
NASA

FRz

FRx

Patm

30°
30 cm

P1,gage

z

x

CV

1

2
·

mV1
·

mV2
→

→

FIGURE 6–20
Schematic for Example 6–2.
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 V2 5
m#

rA2

5
14 kg/s

(1000 kg/m3)(7 3 1024 m2)
5 20.0 m/s 

We use the Bernoulli equation (Chap. 5) as a first approximation to calculate 

the pressure. In Chap. 8 we will learn how to account for frictional losses 

along the walls. Taking the center of the inlet cross section as the reference 

level (z1 5 0) and noting that P2 5 Patm, the Bernoulli equation for a stream-

line going through the center of the elbow is expressed as

 
P1

rg
1

V 2
1

2g
1 z1 5

P2

rg
1

V 2
2

2g
1 z2 

  P1 2 P2 5 rga V 2
2 2 V 2

1

2g
1 z2 2 z1b 

  P1 2 Patm 5 (1000 kg/m3)(9.81 m/s2) 

3 a (20 m/s)2 2 (1.24 m/s)2

2(9.81 m/s2)
1 0.3 2 0b a 1 kN

1000 kg·m/s2b
 P1, gage 5 202.2 kN/m2 5 202.2 kPa (gage)

(b) The momentum equation for steady flow is

aF
!
5 a

out
bm# V

!
2 a

in
bm# V

!

We let the x- and z-components of the anchoring force of the elbow be FRx 

and FRz, and assume them to be in the positive direction. We also use gage 

pressure since the atmospheric pressure acts on the entire control surface. 

Then the momentum equations along the x- and z-axes become

 FRx 1 P1, gage A1 5 bm# V2 cos u 2 bm# V1

 FRz 5 bm# V2 sin u

where we have set b 5 b1 5 b2. Solving for FRx and FRz, and substituting the 

given values,

 FRx 5 bm# (V2 cos u 2 V1) 2 P1, gage A1

5 1.03(14 kg/s)[(20 cos 308 2 1.24) m/s]a 1 N

1 kg·m/s2b
2 (202,200 N/m2)(0.0113 m2)

 5 232 2 2285 5 22053 N 

 FRz 5 bm
#
V2 sin u 5 (1.03)(14 kg/s)(20 sin 308 m/s)a 1 N

1 kg·m/s2b 5 144 N 

The negative result for FRx indicates that the assumed direction is wrong, 

and it should be reversed. Therefore, FRx acts in the negative x-direction.

Discussion  There is a nonzero pressure distribution along the inside walls of 

the elbow, but since the control volume is outside the elbow, these pressures 

do not appear in our analysis. The weight of the elbow and the water in it 

could be added to the vertical force for better accuracy. The actual value 

of P1, gage will be higher than that calculated here because of frictional and 

other irreversible losses in the elbow.
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EXAMPLE 6–3    The Force to Hold a Reversing Elbow in Place

The deflector elbow in Example 6–2 is replaced by a reversing elbow such 

that the fluid makes a 180° U-turn before it is discharged, as shown in 

Fig. 6–21. The elevation difference between the centers of the inlet and the 

exit sections is still 0.3 m. Determine the anchoring force needed to hold 

the elbow in place.

SOLUTION  The inlet and the outlet velocities and the pressure at the inlet 

of the elbow remain the same, but the vertical component of the anchoring 

force at the connection of the elbow to the pipe is zero in this case (FRz 5 0) 

since there is no other force or momentum flux in the vertical direction (we 

are neglecting the weight of the elbow and the water). The horizontal com-

ponent of the anchoring force is determined from the momentum equation 

written in the x-direction. Noting that the outlet velocity is negative since it 

is in the negative x-direction, we have

FRx 1 P1, gage A1 5 b2m
# (2V2) 2 b1m

# V1 5 2bm# (V2 1 V1)

Solving for FRx and substituting the known values,

FRx 5 2bm# (V2 1 V1) 2 P1, gage A1

5 2(1.03)(14 kg/s)[(20 1 1.24) m/s]a 1 N

1 kg·m/s2b 2 (202,200 N/m2)(0.0113 m2)

 5 2306 2 2285 5 22591 N

Therefore, the horizontal force on the flange is 2591 N acting in the nega-

tive x-direction (the elbow is trying to separate from the pipe). This force 

is equivalent to the weight of about 260 kg mass, and thus the connectors 

(such as bolts) used must be strong enough to withstand this force.

Discussion  The reaction force in the x-direction is larger than that of Exam-

ple 6–2 since the walls turn the water over a much greater angle. If the 

reversing elbow is replaced by a straight nozzle (like one used by firefight-

ers) such that water is discharged in the positive x-direction, the momentum 

equation in the x-direction becomes

FRx 1 P1, gage A1 5 bm# V2 2 bm# V1  S   FRx 5 bm# (V2 2 V1) 2 P1, gage A1

since both V1 and V2 are in the positive x-direction. This shows the impor-

tance of using the correct sign (positive if in the positive direction and nega-

tive if in the opposite direction) for velocities and forces.

EXAMPLE 6–4    Water Jet Striking a Stationary Plate

Water is accelerated by a nozzle to an average speed of 20 m/s, and strikes a 

stationary vertical plate at a rate of 10 kg/s with a normal velocity of 20 m/s 

(Fig. 6–22). After the strike, the water stream splatters off in all directions 

in the plane of the plate. Determine the force needed to prevent the plate 

from moving horizontally due to the water stream.

SOLUTION  A water jet strikes a vertical stationary plate normally. The force 

needed to hold the plate in place is to be determined.

Assumptions  1 The flow of water at the nozzle outlet is steady. 2 The water 

splatters in directions normal to the approach direction of the water jet. 

FRz
FRx

Patm

P1,gage

1

2

mV2
·

mV1
·

→

→

CV

FIGURE 6–21
Schematic for Example 6–3.
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z

x

Patm
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Out

V1

V2

1

2

→

→

CV

FIGURE 6–22
Schematic for Example 6–4.
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3 The water jet is exposed to the atmosphere, and thus the pressure of the 

water jet and the splattered water leaving the control volume is atmospheric 

pressure, which is disregarded since it acts on the entire system. 4 The ver-

tical forces and momentum fluxes are not considered since they have no 

effect on the horizontal reaction force. 5 The effect of the momentum-flux 

correction factor is negligible, and thus b > 1 at the inlet.

Analysis  We draw the control volume for this problem such that it contains 

the entire plate and cuts through the water jet and the support bar normally. 

The momentum equation for steady flow is given as

 aF
!
5 a

out
bm# V

!
2 a

in
bm# V

!
 (1)

Writing Eq. 1 for this problem along the x-direction (without forgetting the 

negative sign for forces and velocities in the negative x-direction) and noting 

that V1, x 5 V1 and V2, x 5 0 gives

2FR 5 0 2 bm# V1

Substituting the given values,

FR 5 bm# V1 5 (1)(10 kg/s)(20 m/s)a 1 N

1 kg·m/s2b 5 200 N

Therefore, the support must apply a 200-N horizontal force (equivalent to 

the weight of about a 20-kg mass) in the negative x-direction (the opposite 

direction of the water jet) to hold the plate in place. A similar situation 

occurs in the downwash of a helicopter (Fig. 6–23).

Discussion  The plate absorbs the full brunt of the momentum of the water 

jet since the x-direction momentum at the outlet of the control volume is 

zero. If the control volume were drawn instead along the interface between 

the water and the plate, there would be additional (unknown) pressure forces 

in the analysis. By cutting the control volume through the support, we avoid 

having to deal with this additional complexity. This is an example of a “wise” 

choice of control volume.

EXAMPLE 6–5     Power Generation and Wind Loading 
of a Wind Turbine

A wind generator with a 30-ft-diameter blade span has a cut-in wind speed 

(minimum speed for power generation) of 7 mph, at which velocity the tur-

bine generates 0.4 kW of electric power (Fig. 6–24). Determine (a) the effi-

ciency of the wind turbine–generator unit and (b) the horizontal force exerted 

by the wind on the supporting mast of the wind turbine. What is the effect 

of doubling the wind velocity to 14 mph on power generation and the force 

exerted? Assume the efficiency remains the same, and take the density of air 

to be 0.076 lbm/ft3.

SOLUTION  The power generation and loading of a wind turbine are to be 

analyzed. The efficiency and the force exerted on the mast are to be deter-

mined, and the effects of doubling the wind velocity are to be investigated.

Assumptions  1 The wind flow is steady and incompressible. 2 The efficiency 

of the turbine–generator is independent of wind speed. 3 The frictional effects 

are negligible, and thus none of the incoming kinetic energy is converted to 

1 2

Patm

Patm

mV2
·

mV1
·

FR

Streamline

x

→
→

CV

FIGURE 6–24
Schematic for Example 6–5.

FIGURE 6–23
The downwash of a helicopter 
is similar to the jet discussed in 
Example 6–4. The jet impinges on 
the surface of the water in this case, 
causing circular waves as seen here.
© Purestock/SuperStock RF
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thermal energy. 4 The average velocity of air through the wind turbine is the 

same as the wind velocity (actually, it is considerably less—see Chap. 14). 

5 The wind flow is nearly uniform upstream and downstream of the wind 

turbine and thus the momentum-flux correction factor is b 5 b1 5 b2 > 1.

Properties  The density of air is given to be 0.076 lbm/ft3.

Analysis  Kinetic energy is a mechanical form of energy, and thus it can 

be converted to work entirely. Therefore, the power potential of the wind is 

proportional to its kinetic energy, which is V 2/2 per unit mass, and thus 

the maximum power is m
.
V 2/2 for a given mass flow rate:

 V1 5 (7 mph)a1.4667 ft/s

1 mph
b 5 10.27 ft/s 

 m# 5 r1V 1A1 5 r1V 1 
pD2

4
5 (0.076 lbm/ft3)(10.27 ft/s) 

p(30 ft)2

4
5 551.7 lbm/s

 W
#
max 5 m# ke1 5 m #

V 2
1

2
 

 5 (551.7 lbm/s) 
(10.27 ft/s)2

2
 a 1 lbf

32.2 lbm·ft/s2b a 1 kW

737.56 lbf·ft/s
b

 5 1.225 kW 

Therefore, the available power to the wind turbine is 1.225 kW at the wind 

velocity of 7 mph. Then the turbine–generator efficiency becomes

hwind turbine 5
W
#

act

W
#

max

5
0.4 kW

1.225 kW
5 0.327    (or 32.7%)

(b) The frictional effects are assumed to be negligible, and thus the portion 

of incoming kinetic energy not converted to electric power leaves the wind 

turbine as outgoing kinetic energy. Noting that the mass flow rate remains 

constant, the exit velocity is determined to be

 m# ke2 5 m# ke1(1 2 hwind turbine) S    m #
V 2

2

2
5 m #

V 2
1

2
 (1 2 hwind turbine) (1)

or

V2 5 V1"1 2 hwind turbine 5 (10.27 ft/s)"1 2 0.327 5 8.43 ft/s

To determine the force on the mast (Fig. 6–25), we draw a control volume 

around the wind turbine such that the wind is normal to the control surface 

at the inlet and the outlet and the entire control surface is at atmospheric 

pressure (Fig. 6–23). The momentum equation for steady flow is given as

 aF
!
5 a

out
bm# V

!
2 a

in
bm# V

!
 (2)

Writing Eq. 2 along the x-direction and noting that b 5 1, V1, x 5 V1, and 

V2, x 5 V2 give

 FR 5 m
#
V2 2 m

#
V1 5 m

# (V2 2 V1) (3)

Substituting the known values into Eq. 3 gives

 FR 5 m
# (V2 2 V1) 5 (551.7 lbm/s)(8.43 2 10.27 ft/s) a 1 lbf

32.2 lbm·ft/s2b
 5 231.5 lbf

FIGURE 6–25
Forces and moments on the supporting 

mast of a modern wind turbine 
can be substantial, and increase 

like V 2; thus the mast is typically 
quite large and strong.

© Ingram Publishing/SuperStock RF
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The negative sign indicates that the reaction force acts in the negative 

x-direction, as expected. Then the force exerted by the wind on the mast 

becomes Fmast 5 2FR 5 31.5 lbf.
 The power generated is proportional to V 3 since the mass flow rate is 

proportional to V  and the kinetic energy to V 2. Therefore, doubling the wind 

velocity to 14 mph will increase the power generation by a factor of 23 5 8 

to 0.4 3 8 5 3.2 kW. The force exerted by the wind on the support mast 

is proportional to V 2. Therefore, doubling the wind velocity to 14 mph will 

increase the wind force by a factor of 22 5 4 to 31.5 3 4 5 126 lbf.

Discussion  Wind turbines are treated in more detail in Chap. 14.

EXAMPLE 6–6    Deceleration of a Spacecraft

A spacecraft with a mass of 12,000 kg is dropping vertically towards a 

planet at a constant speed of 800 m/s (Fig. 6–26). To slow down the 

spacecraft, a solid-fuel rocket at the bottom is fired, and combustion 

gases leave the rocket at a constant rate of 80 kg/s and at a velocity 

of 3000 m/s relative to the spacecraft in the direction of motion of the 

spacecraft for a period of 5 s. Disregarding the small change in the mass 

of the spacecraft, determine (a) the deceleration of the spacecraft during 

this period, (b) the change of velocity of the spacecraft, and (c) the thrust 

exerted on the spacecraft.

SOLUTION  The rocket of a spacecraft is fired in the direction of motion. 

The deceleration, the velocity change, and the thrust are to be determined. 

Assumptions  1 The flow of combustion gases is steady and one-dimensional 

during the firing period, but the flight of the spacecraft is unsteady. 2 There 

are no external forces acting on the spacecraft, and the effect of pressure 

force at the nozzle outlet is negligible. 3 The mass of discharged fuel is 

negligible relative to the mass of the spacecraft, and thus, the spacecraft 

may be treated as a solid body with a constant mass. 4 The nozzle is well 

designed such that the effect of the momentum-flux correction factor is neg-

ligible, and thus, b > 1.

Analysis  (a) For convenience, we choose an inertial reference frame that 

moves with the spacecraft at the same initial velocity. Then the velocities 

of the fluid stream relative to an inertial reference frame become simply the 

velocities relative to the spacecraft. We take the direction of motion of the 

spacecraft as the positive direction along the x-axis. There are no external 

forces acting on the spacecraft, and its mass is essentially constant. There-

fore, the spacecraft can be treated as a solid body with constant mass, and 

the momentum equation in this case is, from Eq. 6–29,

F
!
thrust 5 m spacecraft a

!
spacecraft 5 a

in
bm
#
V
!
2 a

out
bm
#
V
!

where the fluid stream velocities relative to the inertial reference frame in 

this case are identical to the velocities relative to the spacecraft. Noting 

that the motion is on a straight line and the discharged gases move in the 

positive x-direction, we write the momentum equation using magnitudes as

mspacecraftaspacecraft 5 mspacecraft

dV spacecraft

dt
5 2 m

#
gasV gas

800 m/s

80 kg/s3000 m/s
x

FIGURE 6–26
Schematic for Example 6–6.
© Brand X Pictures/PunchStock
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Noting that gases leave in the positive x-direction and substituting, the 

acceleration of the spacecraft during the first 5 seconds is determined to be

aspacecraft 5
dV spacecraft

dt
5 2

m
#
gas

mspacecraft

Vgas 5 2
80 kg/s

12,000 kg
(13000 m/s) 5 220 m/s2

The negative value confirms that the spacecraft is decelerating in the posi-

tive x direction at a rate of 20 m/s2.

(b) Knowing the deceleration, which is constant, the velocity change of the 

spacecraft during the first 5 seconds is determined from the definition of 

acceleration to be

 dVspacecraft 5 aspacecraftdt S  DV spacecraft 5 aspacecraftDt 5 (220 m/s2)(5 s)

 5 2100 m/s

(c) The thrusting force exerted on the space aircraft is, from Eq. 6-29,

Fthrust 5 0 2 m
#
gasVgas 5 0 2 (80 kg/s)(13000 m/s)a 1 kN

1000 kg·m/s2b 5 2240 kN

The negative sign indicates that the trusting force due to firing of the rocket 

acts on the aircraft in the negative x-direction. 

Discussion  Note that if this fired rocket were attached somewhere on a test 

stand, it would exert a force of 240 kN (equivalent to the weight of about 24 tons 

of mass) to its support in the opposite direction of the discharged gases.

EXAMPLE 6–7    Net Force on a Flange

Water flows at a rate of 18.5 gal/min through a flanged faucet with a par-

tially closed gate valve spigot (Fig. 6–27). The inner diameter of the pipe 

at the location of the flange is 0.780 in (5 0.0650 ft), and the pressure 

at that location is measured to be 13.0 psig. The total weight of the faucet 

assembly plus the water within it is 12.8 lbf. Calculate the net force on the 

flange.

SOLUTION  Water flow through a flanged faucet is considered. The net force 

acting on the flange is to be calculated.

Assumptions  1 The flow is steady and incompressible. 2 The flow at the 

inlet and at the outlet is turbulent and fully developed so that the momentum-

flux correction factor is about 1.03. 3 The pipe diameter at the outlet of the 

faucet is the same as that at the flange.

Properties  The density of water at room temperature is 62.3 lbm/ft3.

Analysis  We choose the faucet and its immediate surroundings as the control 

volume, as shown in Fig. 6–27 along with all the forces acting on it. These 

forces include the weight of the water and the weight of the faucet assembly, 

the gage pressure force at the inlet to the control volume, and the net force 

of the flange on the control volume, which we call F
→
R. We use gage pressure 

for convenience since the gage pressure on the rest of the control surface 

is zero (atmospheric pressure). Note that the pressure through the outlet of 

the control volume is also atmospheric since we are assuming incompressible 

flow; hence, the gage pressure is also zero through the outlet.

Wfaucet

Wwater

P1,gage

CV

Out

Spigot

Flange

x

z

In

FR

FIGURE 6–27
Control volume for Example 6–7 

with all forces shown; gage pressure 
is used for convenience.
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 We now apply the control volume conservation laws. Conservation of mass 

is trivial here since there is only one inlet and one outlet; namely, the mass 

flow rate into the control volume is equal to the mass flow rate out of the 

control volume. Also, the outflow and inflow average velocities are identical 

since the inner diameter is constant and the water is incompressible, and 

are determined to be

V2 5 V1 5 V 5
V
#

Ac

5
V
#

pD2/4
5

18.5 gal/min

p(0.065 ft)2/4
 a0.1337 ft3

1 gal
b a1 min

60 s
b 512.42 ft/s

Also,

m# 5 rV
#

5 (62.3 lbm/ft3)(18.5 gal/min)a0.1337 ft3

1 gal
b a1 min

60 s
b 5 2.568 lbm/s

Next we apply the momentum equation for steady flow,

 aF
!
5 a

out
bm# V

!
2 a

in
bm# V

!
 (1)

We let the x- and z-components of the force acting on the flange be FRx and 

FRz, and assume them to be in the positive directions. The magnitude of 

the velocity in the x-direction is 1V1 at the inlet, but zero at the outlet. The 

magnitude of the velocity in the z-direction is zero at the inlet, but 2V2 at 

the outlet. Also, the weight of the faucet assembly and the water within it 

acts in the 2z-direction as a body force. No pressure or viscous forces act on 

the chosen (wise) control volume in the z-direction.

 The components of Eq. 1 along the x- and z-directions become

 FRx 1 P1, gage A1 5 0 2 m# (1V1)

 FRz 2 Wfaucet 2 W water 5 m# (2V2) 2 0

Solving for FRx and FRz, and substituting the given values,

 FRx 5 2m# V1 2 P1, gage A1

 5 2(2.568 lbm/s)(12.42 ft/s)a 1 lbf

32.2 lbm·ft/s2b 2 (13 lbf/in2) 
p(0.780 in)2

4

 5 27.20 lbf

 FRz 5 2m
#
V2 1 Wfaucet1water 

 5 2(2.568 lbm/s)(12.42 ft/s)a 1 lbf

32.2 lbm·ft/s2b 1 12.8 lbf 5 11.8 lbf 

Then the net force of the flange on the control volume is expressed in vector 

form as

F
!
R 5 FRx   i 

!
1 FRz k

!
5 27.20   i

!
1 11.8k

!
 lbf

From Newton’s third law, the force the faucet assembly exerts on the flange 

is the negative of F
→
R,

 F
!
faucet on flange 5 2F

!
R 5 7.20  i

!
2 11.8 k

!
 lbf

Discussion  The faucet assembly pulls to the right and down; this agrees 

with our intuition. Namely, the water exerts a high pressure at the inlet, but 
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the outlet pressure is atmospheric. In addition, the momentum of the water 

at the inlet in the x-direction is lost in the turn, causing an additional force 

to the right on the pipe walls. The faucet assembly weighs much more than 

the momentum effect of the water, so we expect the force to be downward. 

Note that labeling forces such as “faucet on flange” clarifies the direction 

of the force.

6–5 ■  REVIEW OF ROTATIONAL MOTION
AND ANGULAR MOMENTUM

The motion of a rigid body can be considered to be the combination 
of  translational motion of its center of mass and rotational motion about 
its center of mass. The translational motion is analyzed using the linear 
momentum equation, Eq. 6–1. Now we discuss the rotational motion—a 
motion during which all points in the body move in circles about the axis 
of rotation. Rotational motion is described with angular quantities such as  
angular distance u, angular velocity 

→
v, and angular acceleration 

→
a.

 The amount of rotation of a point in a body is expressed in terms of the 
angle u swept by a line of length r that connects the point to the axis of 
rotation and is perpendicular to the axis. The angle u is expressed in radians 
(rad), which is the arc length corresponding to u on a circle of unit radius. 
Noting that the circumference of a circle of radius r is 2pr, the angular 
distance traveled by any point in a rigid body during a complete rotation 
is 2p rad. The physical distance traveled by a point along its circular path 
is l 5 ur, where r is the normal distance of the point from the axis of rota-
tion and u is the angular distance in rad. Note that 1 rad corresponds to 
360/(2p) > 57.3°.
 The magnitude of angular velocity v is the angular distance traveled per 
unit time, and the magnitude of angular acceleration a is the rate of change 
of angular velocity. They are expressed as (Fig. 6–28),

 v 5
du

dt
5

d(l/r)

dt
5

1
r
 
dl

dt
5

V
r
  and  a 5

dv

dt
5

d 2u

dt 2 5
1
r
 
dV

dt
5

at

r
 (6–30)

or

 V 5 rv  and  at 5 ra (6–31)

where V is the linear velocity and at is the linear acceleration in the tangen-
tial direction for a point located at a distance r from the axis of rotation. 
Note that v and a are the same for all points of a rotating rigid body, but V 
and at are not (they are proportional to r).
 Newton’s second law requires that there must be a force acting in the 
tangential direction to cause angular acceleration. The strength of the rotat-
ing effect, called the moment or torque, is proportional to the magnitude of 
the force and its distance from the axis of rotation. The perpendicular dis-
tance from the axis of rotation to the line of action of the force is called the 
moment arm, and the magnitude of torque M acting on a point mass m at  
normal distance r from the axis of rotation is expressed as

 M 5 rFt 5 rmat 5 mr2a (6–32)

v

v =  = du
dt

u

r

r

V = rv

V
r

FIGURE 6–28
The relations between angular 
distance u, angular velocity v, 

and linear velocity V in a plane.
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The total torque acting on a rotating rigid body about an axis is determined 
by integrating the torque acting on differential mass dm over the entire body 
to give

Magnitude of torque: M 5 #
mass

 r2a dm 5 c#
mass

 r2 dm da 5 Ia (6–33)

where I is the moment of inertia of the body about the axis of rotation, which 
is a measure of the inertia of a body against rotation. The relation M 5 Ia is 
the counterpart of Newton’s second law, with torque replacing force, moment 
of inertia replacing mass, and angular acceleration replacing linear accelera-
tion (Fig. 6–29). Note that unlike mass, the rotational inertia of a body also 
depends on the distribution of the mass of the body with respect to the axis 
of rotation. Therefore, a body whose mass is closely packed about its axis 
of rotation has a small resistance against angular acceleration, while a body 
whose mass is concentrated at its periphery has a large resistance against 
angular acceleration. A flywheel is a good example of the latter.
 The linear momentum of a body of mass m having velocity V

!
 is mV

!
, and 

the direction of linear momentum is identical to the direction of velocity. 
Noting that the moment of a force is equal to the product of the force and 
the normal distance, the magnitude of the moment of momentum, called 
the angular momentum, of a point mass m about an axis is expressed as 
H 5 rmV 5 r2mv, where r is the normal distance from the axis of rotation to 
the line of action of the momentum vector (Fig. 6–30). Then the total angular 
momentum of a rotating rigid body is determined by integration to be

Magnitude of angular momentum: H 5 #
mass

 r2v dm 5 c#
mass

 r2 dm dv 5 Iv (6–34)

where again I is the moment of inertia of the body about the axis of rota-
tion. It can also be expressed more generally in vector form as

  H
!
5 I v

!
 (6–35)

Note that the angular velocity v
→

 is the same at every point of a rigid body.
 Newton’s second law F

!
 5 ma

→
 was expressed in terms of the rate of change 

of linear momentum in Eq. 6–1 as F
!
 5 d(mV

!
)/dt. Likewise, the counter part of 

Newton’s second law for rotating bodies  M
!
 5 Ia

→
 is expressed in Eq. 6–2 in 

terms of the rate of change of angular momentum as

Angular momentum equation:  M
!
5 I  a

!
5 I 

d v
!

dt
5

d(I v
!
 )

dt
5

d H
!

dt
 (6–36)

where  M
!
 is the net torque applied on the body about the axis of rotation.

 The angular velocity of rotating machinery is typically expressed in rpm 
(number of revolutions per minute) and denoted by n

.
. Noting that veloc-

ity is distance traveled per unit time and the angular distance traveled 
during each revolution is 2p, the angular velocity of rotating machinery is 
v 5 2pn

.
 rad/min or

Angular velocity versus rpm: v 5 2pn
#  (rad/min) 5

2pn#

60
  (rad/s) (6–37)

 Consider a constant force F acting in the tangential direction on the outer 
surface of a shaft of radius r rotating at an rpm of n

.
. Noting that work W is 

Mass, Mass, m Moment of inertia, Moment of inertia, I

Linear acceleration, Linear acceleration, a Angular acceleration, Angular acceleration, a

Linear velocity, Linear velocity, V Angular velocity, Angular velocity, v

Force, Force, F Torque, Torque, M

Moment of force, Moment of force, M Moment of momentum, Moment of momentum, H

mVmV Iv

Linear momentumLinear momentum Angular momentumAngular momentum

F = maF = ma M = IM = Ia

M = r M = r 3 F F H = r H = r 3 mV mV

→→

→

→ →

→

→ →

→

→ → →→

→

→ → →→→→

FIGURE 6–29
Analogy between corresponding 
linear and angular quantities.

H = rmV
 = rm(rv)
 = r2mv
 = Iv

v

r
m

mV = mrv

V = rv

FIGURE 6–30
Angular momentum of point mass 
m rotating at angular velocity v at 
distance r from the axis of rotation.
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force times distance, and power W
.
 is work done per unit time and thus force 

times velocity, we have W
.
shaft 5 FV 5 Frv 5 Mv. Therefore, the power 

transmitted by a shaft rotating at an rpm of n
.
 under the influence of an 

applied torque M is (Fig. 6–31)

Shaft power: W
#

shaft 5 vM 5 2pn#M (6–38)

 The kinetic energy of a body of mass m during translational motion is 
KE 5 1

2mV2. Noting that V 5 rv, the rotational kinetic energy of a body of 
mass m at a distance r from the axis of rotation is KE 5 1

2mr2v2. The total 
rotational kinetic energy of a rotating rigid body about an axis is determined 
by integrating the rotational kinetic energies of differential masses dm over 
the entire body to give

Rotational kinetic energy: KEr 5
1

2
Iv2 (6–39)

where again I is the moment of inertia of the body and v is the angular 
velocity.
 During rotational motion, the direction of velocity changes even when its 
magnitude remains constant. Velocity is a vector quantity, and thus a change 
in direction constitutes a change in velocity with time, and thus accelera-
tion. This is called centripetal acceleration. Its magnitude is

ar 5
V 2

r
5 rv2

Centripetal acceleration is directed toward the axis of rotation (opposite 
direction of radial acceleration), and thus the radial acceleration is negative. 
Noting that acceleration is a constant multiple of force, centripetal accelera-
tion is the result of a force acting on the body toward the axis of rotation, 
known as the centripetal force, whose magnitude is Fr 5 mV 2/r. Tangential 
and radial accelerations are perpendicular to each other (since the radial and 
tangential directions are perpendicular), and the total linear acceleration is 
determined by their vector sum, a

→
 5 a

→
t 1 a

→
r. For a body rotating at con-

stant angular velocity, the only acceleration is the centripetal acceleration. 
The  centripetal force does not produce torque since its line of action inter-
sects the axis of rotation.

6–6 ■  THE ANGULAR MOMENTUM EQUATION
The linear momentum equation discussed in Section 6–4 is useful for deter-
mining the relationship between the linear momentum of flow streams 
and the resultant forces. Many engineering problems involve the moment 
of the linear momentum of flow streams, and the rotational effects caused 
by them. Such problems are best analyzed by the angular momentum equa-
tion, also called the moment of momentum equation. An important class of 
fluid devices, called turbomachines, which include centrifugal pumps, tur-
bines, and fans, is analyzed by the angular momentum equation.
 The moment of a force  F

!
 about a point O is the vector (or cross) product 

(Fig. 6–32) 

Moment of a force: M
!
5 r

!
3 F

!
 (6–40)

Wshaft = vM = 2pnM
⋅ ⋅

v = 2pn⋅

FIGURE 6–31
The relations between angular 

velocity, rpm, and the power 
transmitted through a rotating shaft.

Direction of
rotation

O

r

F

M 5 r 3 F
M 5 Fr sin

θ

r sinθ

θ

→→ →

→

→

FIGURE 6–32
The moment of a force F

!
 about a 

point O is the vector product of the 
position vector r

→
 and F

!
.
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where r
→

 is the position vector from point O to any point on the line of 
action of  F

!
. The vector product of two vectors is a vector whose line of 

action is normal to the plane that contains the crossed vectors (r
→

 and  F
!
 in 

this case) and whose magnitude is

Magnitude of the moment of a force: M 5 Fr sin u (6–41)

where u is the angle between the lines of action of the vectors r
→

 and  F
!
. 

Therefore, the magnitude of the moment about point O is equal to the mag-
nitude of the force multiplied by the normal distance of the line of action 
of the force from the point O. The sense of the moment vector  M

!
 is deter-

mined by the right-hand rule: when the fingers of the right hand are curled 
in the direction that the force tends to cause rotation, the thumb points the 
direction of the moment vector (Fig. 6–33). Note that a force whose line of 
action passes through point O produces zero moment about point O.
 The vector product of r

→
 and the momentum vector mV

!
 gives the moment of 

momentum, also called the angular momentum, about a point O as

Moment of momentum:  H
!
5  r

!
3 mV

!
 (6–42)

Therefore, r
→

 3 V
!
 represents the angular momentum per unit mass, and the 

angular momentum of a differential mass dm 5 r  dV is d H
!
 5 (r

→
 3 V

!
 )r  dV. 

Then the angular momentum of a system is determined by integration to be

Moment of momentum (system):  H
!
sys 5 #

sys
 (  r
!
3 V

!
)r dV  (6–43)

The rate of change of the moment of momentum is

Rate of change of moment of momentum: 
dH
!
sys

dt
5

d

dt
 #

sys
 (r
!
3 V

!
)r dV  (6–44)

 The angular momentum equation for a system was expressed in Eq. 6–2 as

 aM
!
5

dH
!
sys

dt
 (6–45)

where Σ M
!
 5 Σ(r

→
 3  F

!
) is the net torque or moment applied on the sys-

tem, which is the vector sum of the moments of all forces acting on the 
system, and d H

!
sys /dt is the rate of change of the angular momentum of the 

system. Equation 6–45 is stated as the rate of change of angular momentum 
of a system is equal to the net torque acting on the system. This equation is 
valid for a fixed quantity of mass and an inertial reference frame, i.e., a refer-
ence frame that is fixed or moves with a constant velocity in a straight path.
 The general control volume formulation of the angular momentum equa-
tion is obtained by setting b 5 r

→
 3 V

!
 and thus B 5  H

!
 in the general Reyn-

olds transport theorem. It gives (Fig. 6–34)

 
dH
!
sys

dt
5

d

dt
 #

CV
( r
!
3 V

!
 )r dV 1 #

CS
 ( r
!
3 V

!
 )r(V

!
r· n
!
 ) dA (6–46)

The left-hand side of this equation is, from Eq. 6–45, equal to Σ M
!
. Substi-

tuting, the angular momentum equation for a general control volume (sta-
tionary or moving, fixed shape or distorting) is

General: aM
!
5

d

dt
 #

CV
 ( r
!
3 V

!
 )r dV 1 #

CS
 ( r
!
3 V

!
 )r(V

!
r· 

n
!
 ) dA (6–47)

Sense of the
moment

F

M = r  3 F
→ →→

→

ω 

Axis of
rotation

r→

FIGURE 6–33
The determination of the direction of 
the moment by the right-hand rule.

= +rb dV

B = H

dBsys

dt
d

dt
CV
# rb(Vr · n ) dA

CS
#

= (r 3 V)r dV
dH sys

dt
d

dt
CV
#

b =  r 3 V b =  r  3 V

→

→

→

→ →→

→ →

+ (r  3 V)r(Vr · n) dA
CS
# → → → →

→

FIGURE 6–34
The angular momentum equation 
is obtained by replacing B in the 
Reynolds transport theorem by the 
angular momentum  H

!
, and b by 

the angular momentum per unit 
mass r

→
 3 V

!
.
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which is stated in words as£ The sum of all

external moments

acting on a CV

5 £ The time rate of change 

of the angular momentum

of the contents of the CV

1 ± The net flow rate of

angular momentum

out of the control

surface by mass flow

Again, V
!
r 5 V

!
 2 V

!
CS is the fluid velocity relative to the control surface (for 

use in mass flow rate calculations at all locations where the fluid crosses the 
control surface), and V

!
 is the fluid velocity as viewed from a fixed reference 

frame. The product r(V
!
r·n

→
) dA represents the mass flow rate through dA 

into or out of the control volume, depending on the sign.
 For a fixed control volume (no motion or deformation of the control 
volume), V

!
r 5 V

!
 and the angular momentum equation becomes

Fixed CV: aM
!
5

d

dt
 #

CV
 (  r 

!
3 V

!
 )r dV 1 #

CS
 ( r
!
3 V

!
 )r( V

!
·n
!
 ) dA (6–48)

 Also, note that the forces acting on the control volume consist of body 
forces that act throughout the entire body of the control volume such as grav-
ity, and surface forces that act on the control surface such as the pressure and 
reaction forces at points of contact. The net torque consists of the moments 
of these forces as well as the torques applied on the control volume.

Special Cases
During steady flow, the amount of angular momentum within the con-
trol volume remains constant, and thus the time rate of change of angular 
momentum of the contents of the control volume is zero. Then,

Steady flow: aM
!
5 #

CS
 ( r
!
3 V

!
 )r( V

!
r· 

n
!
 ) dA (6–49)

In many practical applications, the fluid crosses the boundaries of the control 
volume at a certain number of inlets and outlets, and it is convenient to replace 
the area integral by an algebraic expression written in terms of the average prop-
erties over the cross-sectional areas where the fluid enters or leaves the control 
volume. In such cases, the angular momentum flow rate can be expressed as 
the difference in the angular momentum of outgoing and incoming streams. 
Furthermore, in many cases the moment arm r

→
 is either constant along the 

inlet or outlet (as in radial flow turbomachines) or is large compared to the 
diameter of the inlet or outlet pipe (as in rotating lawn sprinklers, Fig. 6–35). 
In such cases, the average value of r

→
 is used throughout the cross-sectional 

area of the inlet or outlet. Then, an approximate form of the angular momen-
tum equation in terms of average properties at inlets and outlets becomes

 aM
!
>

d

dt
 #

CV
 (r
!
3 V

!
)r dV 1 a

out
(r
!
3 m# V

!
) 2 a

in
(r
!
3 m# V

!
) (6–50)

You may be wondering why we don’t introduce a correction factor into 
Eq. 6–50, like we did for conservation of energy (Chap. 5) and for conserva-
tion of linear momentum (Section 6–4). The reason is that the cross product 
of r

→
 and m

#
V
!
 is dependent on problem geometry, and thus, such a correction 

FIGURE 6–35
A rotating lawn sprinkler is a good 

example of application of the angular 
momentum equation.

© John A. Rizzo/Getty RF
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factor would vary from problem to problem. Therefore, whereas we can 
readily calculate a kinetic energy flux correction factor and a momentum 
flux correction factor for fully developed pipe flow that can be applied to 
various problems, we cannot do so for angular momentum. Fortunately, in 
many problems of practical engineering interest, the error associated with 
using average values of radius and velocity is small, and the approximation 
of Eq. 6–50 is reasonable.
 If the flow is steady, Eq. 6–50 further reduces to (Fig. 6–36)

Steady flow: aM
!
5 a

out
(r
!
3 m# V

!
 ) 2 a

in
(r
!
3 m# V

!
 ) (6–51)

Equation 6–51 states that the net torque acting on the control volume during 
steady flow is equal to the difference between the outgoing and incoming 
angular momentum flow rates. This statement can also be expressed for any 
specified direction. Note that velocity V

!
 in Eq. 6–51 is the velocity relative 

to an inertial coordinate system.
 In many problems, all the significant forces and momentum flows are in the 
same plane, and thus all give rise to moments in the same plane and about the 
same axis. For such cases, Eq. 6–51 can be expressed in scalar form as

 aM 5 a
out

rm
#
V 2 a

in
rm
#
V  (6–52)

where r represents the average normal distance between the point about 
which moments are taken and the line of action of the force or velocity, 
provided that the sign convention for the moments is observed. That is, all 
moments in the counterclockwise direction are positive, and all moments in 
the clockwise direction are negative.

Flow with No External Moments
When there are no external moments applied, the angular momentum equa-
tion Eq. 6–50 reduces to

No external moments: 0 5
dH
!
CV

dt
1 a

out
(r
!
3 m# V

!
) 2 a

in
(r
!
3 m# V

!
) (6–53)

This is an expression of the conservation of angular momentum principle, 
which can be stated as in the absence of external moments, the rate of 
change of the angular momentum of a control volume is equal to the differ-
ence between the incoming and outgoing angular momentum fluxes.
 When the moment of inertia I of the control volume remains constant, the 
first term on the right side of Eq. 6–53 becomes simply moment of inertia 
times angular acceleration, Ia

→
. Therefore, the control volume in this case 

can be treated as a solid body, with a net torque of

  M
!
body 5 Ibody a

!
5 a

in
(r
!
3 m# V

!
) 2 a

out
(r
!
3 m# V

!
) (6–54)

(due to a change of angular momentum) acting on it. This approach can 
be used to determine the angular acceleration of space vehicles and aircraft 
when a rocket is fired in a direction different than the direction of motion.

FIGURE 6–36
The net torque acting on a control 
volume during steady flow is equal 
to the difference between the outgoing 
and incoming angular momentum 
flow rates.

S M = S r  3 m
•

V – S r 3 m
•

V
out in

→ → →→ →
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Radial-Flow Devices
Many rotary-flow devices such as centrifugal pumps and fans involve flow 
in the radial direction normal to the axis of rotation and are called radial-
flow devices (Chap. 14). In a centrifugal pump, for example, the fluid enters 
the device in the axial direction through the eye of the impeller, turns out-
ward as it flows through the passages between the blades of the impel-
ler, collects in the scroll, and is discharged in the tangential direction, as 
shown in Fig. 6–37. Axial-flow devices are easily analyzed using the linear 
momentum equation. But radial-flow devices involve large changes in angu-
lar momentum of the fluid and are best analyzed with the help of the angu-
lar momentum equation. 
 To analyze a centrifugal pump, we choose the annular region that encloses 
the impeller section as the control volume, as shown in Fig. 6–38. Note that 
the average flow velocity, in general, has normal and tangential components 
at both the inlet and the outlet of the impeller section. Also, when the shaft 
rotates at angular velocity v, the impeller blades have tangential velocity vr1 
at the inlet and vr2 at the outlet. For steady, incompressible flow, the conser-
vation of mass equation is written as

 V
#

1 5 V
#

2 5 V
#
  S  (2pr1b1)V1, n 5 (2pr2b2)V2, n  (6–55)

where b1 and b2 are the flow widths at the inlet where r 5 r1 and at the 
outlet where r 5 r2, respectively. (Note that the actual circumferential 
cross-sectional area is somewhat less than 2prb since the blade thickness 
is not zero.) Then the average normal components V1, n and V2, n of abso-
lute velocity can be expressed in terms of the volumetric flow rate V

.
 as

 V1, n 5
V
#

2pr1b1

  and  V2, n 5
V
#

2pr2b2

 (6–56)

The normal velocity components V1, n and V2, n as well as pressure acting 
on the inner and outer circumferential areas pass through the shaft center, 
and thus they do not contribute to torque about the origin. Then only the 
tan gential velocity components contribute to torque, and the application of 
the angular momentum equation aM 5 a

out
rm# V 2 a

in
rm# V to the control 

volume gives

Euler’s turbine equation: Tshaft 5 m
# (r2V2, t 2 r1V1, t) (6–57)
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FIGURE 6–37
Side and frontal views of a typical 

centrifugal pump.
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An annular control volume that 

encloses the impeller section of a 
centrifugal pump.
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which is known as Euler’s turbine equation. When the angles a1 and a2 
between the direction of absolute flow velocities and the radial direction are 
known, Eq. 6–57 becomes

 Tshaft 5 m# (r2V2 sin a2 2 r1V1 sin a1) (6–58)

In the idealized case of the tangential fluid velocity being equal to the blade 
angular velocity both at the inlet and the exit, we have V1, t 5 vr1 and V2, t 5 
vr2, and the torque becomes

 Tshaft, ideal 5 m# v(r2
2 2 r2

1) (6–59)

where v 5 2pn
.
 is the angular velocity of the blades. When the torque is 

known, the shaft power is determined from W
.
shaft 5 vTshaft 5 2pn

.
Tshaft.

EXAMPLE 6–8     Bending Moment Acting at the Base 
of a Water Pipe

Underground water is pumped through a 10-cm- diameter pipe that consists 

of a 2-m-long vertical and 1-m-long horizontal section, as shown in Fig. 6–39. 

Water discharges to atmospheric air at an average velocity of 3 m/s, and the 

mass of the horizontal pipe section when filled with water is 12 kg per meter 

length. The pipe is anchored on the ground by a concrete base. Determine 

the bending moment acting at the base of the pipe (point A) and the required 

length of the horizontal section that would make the moment at point A zero.

SOLUTION  Water is pumped through a piping section. The moment acting 

at the base and the required length of the horizontal section to make this 

moment zero is to be determined.

Assumptions  1 The flow is steady. 2 The water is discharged to the atmo-

sphere, and thus the gage pressure at the outlet is zero. 3 The pipe diameter 

is small compared to the moment arm, and thus we use average values of 

radius and velocity at the outlet.

Properties  We take the density of water to be 1000 kg/m3.

Analysis  We take the entire L-shaped pipe as the control volume, and desig-

nate the inlet by 1 and the outlet by 2. We also take the x- and z-coordinates 

as shown. The control volume and the reference frame are fixed.

 The conservation of mass equation for this one-inlet, one-outlet, steady-

flow system is m
.

1 5 m
.

2 5 m
.
, and V1 5 V2 5 V since Ac 5 constant. The 

mass flow rate and the weight of the horizontal section of the pipe are

m# 5 rAcV 5 (1000 kg/m3)[p(0.10 m)2/4](3 m/s) 5 23.56 kg/s

W 5 mg 5 (12 kg/m)(1 m)(9.81 m/s2)a 1 N

1 kg·m/s2b 5 117.7 N

To determine the moment acting on the pipe at point A, we need to take the 

moment of all forces and momentum flows about that point. This is a steady-

flow problem, and all forces and momentum flows are in the same plane. 

Therefore, the angular momentum equation in this case is expressed as

aM 5 a
out

rm# V 2 a
in

rm# V

where r is the average moment arm, V is the average speed, all moments in 

the counterclockwise direction are positive, and all moments in the clock-

wise direction are negative.

2 m

1 m
3 m/s

10 cm

A

FIGURE 6–39
Schematic for Example 6–8 and the 
free-body diagram.
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 The free-body diagram of the L-shaped pipe is given in Fig. 6–39. Noting 

that the moments of all forces and momentum flows passing through point A 

are zero, the only force that yields a moment about point A is the weight W 

of the horizontal pipe section, and the only momentum flow that yields a 

moment is the outlet stream (both are negative since both moments are in 

the clockwise direction). Then the angular momentum equation about point A 

becomes

MA 2 r1W 5 2r2m
# V2

Solving for MA and substituting give

 MA 5 r1W 2 r2m
# V2 

 5 (0.5 m)(118 N) 2 (2 m)(23.56 kg/s)(3 m/s)a 1 N

1 kg·m/s2b
 5 282.5 N~m

The negative sign indicates that the assumed direction for MA is wrong and 

should be reversed. Therefore, a moment of 82.5 N·m acts at the stem of 

the pipe in the clockwise direction. That is, the concrete base must apply a 

82.5 N·m moment on the pipe stem in the clockwise direction to counteract 

the excess moment caused by the exit stream.

 The weight of the horizontal pipe is w 5 W/L 5 117.7 N per m length. 

Therefore, the weight for a length of Lm is Lw with a moment arm of r1 5 L/2. 

Setting MA 5 0 and substituting, the length L of the horizontal pipe that 

would cause the moment at the pipe stem to vanish is determined to be

0 5 r1W 2 r2m
# V2 S 0 5 (L/2)Lw 2 r2m

# V2

or

L 5 Å2r2m
# V2

w
5 Å2(2 m)(23.56 kg/s)(3 m/s)

117.7 N/m
  a N

kg·m/s2b 5 1.55 m

Discussion  Note that the pipe weight and the momentum of the exit stream 

cause opposing moments at point A. This example shows the importance of 

accounting for the moments of momentums of flow streams when performing 

a dynamic analysis and evaluating the stresses in pipe materials at critical 

cross sections.

EXAMPLE 6–9    Power Generation from a Sprinkler System

A large lawn sprinkler (Fig. 6–40) with four identical arms is to be con-

verted into a turbine to generate electric power by attaching a generator to 

its rotating head, as shown in Fig. 6–41. Water enters the sprinkler from 

the base along the axis of rotation at a rate of 20 L/s and leaves the nozzles 

in the tangential direction. The sprinkler rotates at a rate of 300 rpm in a 

horizontal plane. The diameter of each jet is 1 cm, and the normal distance 

between the axis of rotation and the center of each nozzle is 0.6 m. Esti-

mate the electric power produced.

SOLUTION  A four-armed sprinkler is used to generate electric power. For a 

specified flow rate and rotational speed, the power produced is to be deter-

mined.

FIGURE 6–40
Lawn sprinklers often have 
rotating heads to spread the 

water over a large area.
© Andy Sotiriou/Getty RF
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Assumptions  1 The flow is cyclically steady (i.e., steady from a frame of 

reference rotating with the sprinkler head). 2 The water is discharged to the 

atmosphere, and thus the gage pressure at the nozzle exit is zero. 3 Genera-

tor losses and air drag of rotating components are neglected. 4 The nozzle 

diameter is small compared to the moment arm, and thus we use average 

values of radius and velocity at the outlet.

Properties  We take the density of water to be 1000 kg/m3 5 1 kg/L.

Analysis  We take the disk that encloses the sprinkler arms as the control 

volume, which is a stationary control volume.

 The conservation of mass equation for this steady-flow system is m
.
1 5 m

.
2 5 

m
.

total. Noting that the four nozzles are identical, we have m
.

nozzle 5 m
.

total/4 or 

V
.

nozzle 5 V
.

total/4 since the density of water is constant. The average jet exit 

velocity relative to the rotating nozzle is

Vjet,r 5
V
#

nozzle

Ajet

5
5 L/s

[p(0.01 m)2/4]
 a 1 m3

1000 L
b 5 63.66 m/s

The angular and tangential velocities of the nozzles are

 v 5 2pn# 5 2p(300 rev/min) a1 min

60 s
b 5 31.42 rad/s

 Vnozzle 5 rv 5 (0.6 m)(31.42 rad/s) 5 18.85 m/s

Note that water in the nozzle is also moving at an average velocity of 

18.85 m/s in the opposite direction when it is discharged. The average abso-

lute velocity of the water jet (velocity relative to a fixed location on earth) is 

the vector sum of its relative velocity (jet velocity relative to the nozzle) and 

the absolute nozzle velocity,

 V
!
jet 5 V

!
jet, r 1 V

!
nozzle

All of these three velocities are in the tangential direction, and taking the 

direction of jet flow as positive, the vector equation can be written in scalar 

form using magnitudes as

Vjet 5 V jet,r 2 V nozzle 5 63.66 2 18.85 5 44.81 m/s

 Noting that this is a cyclically steady-flow problem, and all forces and 

momentum flows are in the same plane, the angular momentum equation

is approximated as aM 5 a
out

rm# V 2 a
in

rm# V, where r is the moment arm,

all moments in the counterclockwise direction are positive, and all moments 

in the clockwise direction are negative.

 The free-body diagram of the disk that contains the sprinkler arms is given 

in Fig. 6–41. Note that the moments of all forces and momentum flows 

passing through the axis of rotation are zero. The momentum flows via the 

water jets leaving the nozzles yield a moment in the clockwise direction and 

the effect of the generator on the control volume is a moment also in the 

clockwise direction (thus both are negative). Then the angular momentum 

equation about the axis of rotation becomes

2Tshaft 5 24rm# nozzleVjet  or  Tshaft 5 rm# totalVjet

Substituting, the torque transmitted through the shaft is

Tshaft 5 rm# totalVjet 5 (0.6 m)(20 kg/s)(44.81 m/s)a 1 N

1 kg·m/s2b 5 537.7 N·m

FIGURE 6–41
Schematic for Example 6–9 and the 
free-body diagram.
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since m
.
total 5 rV

.
total 5 (1 kg/L)(20 L/s) 5 20 kg/s.

 Then the power generated becomes

W
#

5 vTshaft 5 (31.42 rad/s)(537.7 N·m)a 1 kW

1000 N·m/s
b 5 16.9 kW

Therefore, this sprinkler-type turbine has the potential to produce 16.9 kW 

of power.

Discussion  To put the result obtained in perspective, we consider two lim-

iting cases. In the first limiting case, the sprinkler is stuck, and thus, the 

angular velocity is zero. The torque developed is maximum in this case, since 

Vnozzle 5 0. Thus Vjet 5 Vjet, r 5 63.66 m/s, giving Tshaft, max 5 764 N?m. The 

power generated is zero since the generator shaft does not rotate.

 In the second limiting case, the sprinkler shaft is disconnected from the 

generator (and thus both the useful torque and power generation are zero), 

and the shaft accelerates until it reaches an equilibrium velocity. Setting 

Tshaft 5 0 in the angular momentum equation gives the absolute water-jet 

velocity (jet velocity relative to an observer on earth) to be zero, Vjet 5 0. 

Therefore, the relative velocity Vjet, r and absolute velocity Vnozzle are equal but 

in opposite direction. So, the absolute tangential velocity of the jet (and thus 

torque) is zero, and the water mass drops straight down like a waterfall under 

gravity with zero angular momentum (around the axis of rotation). The angular 

speed of the sprinkler in this case is

n# 5
v

2p
5

Vnozzle

2pr
5

63.66 m/s

2p(0.6 m)
a 60 s

1 min
b 5 1013 rpm

Of course, the Tshaft = 0 case is possible only for an ideal, frictionless nozzle (i.e., 

100 percent nozzle efficiency, as a no-load ideal turbine). Otherwise, there would 

be a resisting torque due to friction of the water, shaft, and surrounding air.

 The variation of power produced with angular speed is plotted in Fig. 6–42. 

Note that the power produced increases with increasing rpm, reaches a maxi-

mum (at about 500 rpm in this case), and then decreases. The actual power 

produced would be less than this due to generator inefficiency (Chap. 5) and 

other irreversible losses such as fluid friction within the nozzle (Chap. 8), 

shaft friction, and aerodynamic drag (Chap. 11).
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FIGURE 6–42
The variation of power produced 

with angular speed for the turbine of 
Example 6–9.

Guest Authors: Alexander Smits, Keith Moored and Peter 
Dewey, Princeton University

Aquatic animals propel themselves using a wide variety of mechanisms. 
Most fish flap their tail to produce thrust, and in doing so they shed two 
single vortices per flapping cycle, creating a wake that resembles a reverse 
von Kármán vortex street. The non-dimensional number that describes this 
vortex shedding is the Strouhal number St, where St 5 fA/U∞, where f is the 
frequency of actuation, A is the peak-to-peak amplitude of the trailing edge 
motion at the half-span, and U∞ is the steady swimming velocity. Remark-
ably, a wide variety of fish and mammals swim in the range 0.2 < St < 0.35.
 In manta rays (Fig. 6–43), propulsion is achieved by combining oscillatory 
and undulatory motions of flexible pectoral fins. That is, as the manta ray 

APPLICATION SPOTLIGHT ■ Manta Ray Swimming

FIGURE 6–43
The manta ray is the largest of the 

rays, reaching up to 8 m in span. 
They swim with a motion that is a 

combination of flapping and 
undulation of their large pectoral fins. 

© Frank & Joyce Burek/Getty RF
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flaps its fins, it is also generating a traveling wave motion along the chord, 
opposite to the direction of its motion. This wave motion is not readily 
apparent because the wavelength is 6 to 10 times greater than the chord 
length. A similar undulation is observed in sting rays, but there it is more 
obvious because the wavelength is less than the chord length. Field observa-
tions indicate that many species of manta ray are migratory, and that they 
are very efficient swimmers. They are difficult to study in the laboratory 
because they are a protected and somewhat fragile creature. However, it is 
possible to study many aspects of their swimming behavior by mimicking 
their propulsive techniques using robots or mechanical devices such as that 
shown in Fig. 6–44. The flow field generated by such a fin displays the vor-
tex shedding seen in other fish studies, and when time-averaged displays a 
high momentum jet that contributes to the thrust (Fig 6–45). The thrust and 
efficiencies can also be measured directly, and it appears that the undulatory 
motion due to the traveling wave is most important to thrust production at 
high efficiency in the manta ray.
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FIGURE 6–45
Measurements of the wake of the 
manta ray fin mechanism, with the flow 
going from bottom to top. On the left, 
we see the vortices shed in the wake, 
alternating between positive vorticity 
(red) and negative vorticity (blue). The 
induced velocities are shown by the 
black arrows, and in this case we see 
that thrust is being produced. On the  
right, we see the time-averaged velocity 
field. The unsteady velocity field 
induced by the vortices produces a 
high velocity jet in the time-averaged 
field. The momentum flux associated 
with this jet contributes to the total 
thrust on the fin.
Image courtesy of Peter Dewey, Keith Moored 
and Alexander Smits. Used by permission.

U∞

FIGURE 6–44
Manta ray fin mechanism, showing the 
vortex pattern produced in the wake 
when it is swimming in a range where 
two single vortices are shed into the 
wake per flapping cycle. The artificial 
flexible fin is actuated by four rigid 
spars; by changing the relative phase 
differences between adjacent actuators, 
undulations of varying wavelength 
can be produced. 
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SUMMARY

This chapter deals mainly with the conservation of momen-
tum for finite control volumes. The forces acting on the con-
trol volume consist of body forces that act throughout the 
entire body of the control volume (such as gravity, electric, 
and magnetic forces) and surface forces that act on the con-
trol surface (such as the pressure forces and reaction forces 
at points of contact). The sum of all forces acting on the 
control volume at a particular instant in time is represented 
by ΣF

!
and is expressed as

aF
!
5 aF

!
gravity 1 aF

!
pressure 1 aF

!
viscous 1 aF

!
other

 total force body force surface forces

 Newton’s second law can be stated as the sum of all 
external forces acting on a system is equal to the time rate of 
change of linear momentum of the system. Setting b 5 V

!
 and 

thus B 5 mV
!
 in the Reynolds transport theorem and utilizing 

Newton’s second law gives the linear momentum equation 
for a control volume as

aF
!
5

d

dt
 #

CV
rV
!
 dV 1 #

CS
 rV
!
(V
!
r 
·n
!
) dA

which reduces to the following special cases:

Steady flow: aF
!
5 #

CS
 rV
!
(V
!
r·n
!
) dA

Unsteady flow (algebraic form):

aF
!
5

d

dt
 #

CV
 rV
!
 dV 1 a

out
bm# V

!
2 a

in
bm# V

!

Steady flow (algebraic form): aF
!
5 a

out
bm# V

!
2 a

in
bm# V

!

No external forces: 0 5
d(mV

!
)CV

dt
1 a

out
bm# V

!
2 a

in
bm# V

!

where b is the momentum-flux correction factor. A con-
trol volume whose mass m remains constant can be treated 
as a solid body (a fixed-mass system) with a net thrusting 
force (also called simply the thrust) of 

 F
!
thrust 5 mCVa

!
5 a

in
bm# V

!
2 a

out
bm# V

!

acting on the body.

 Newton’s second law can also be stated as the rate of 
change of angular momentum of a system is equal to the net 
torque acting on the system. Setting b 5 r

→
 3 V

!
 and thus 

B 5 H
!
 in the general Reynolds transport theorem gives the 

angular momentum equation as

aM
!
5

d

dt
 #

CV
 (r
!
3 V

!
)r dV 1 #

CS
(r
!
3 V

!
)r(V

!
r·n
!
 ) dA

which reduces to the following special cases:

Steady flow: aM
!
5 #

CS
 (r
!
3 V

!
)r(V

!
r·n
!
 ) dA

Unsteady flow (algebraic form):

aM
!
5

d

dt
 #

CV
 (r
!
3 V

!
)r dV 1 a

out
r
!
3 m# V

!
2 a

in
r
!
3 m# V

!

Steady and uniform flow:

aM
!
5 a

out
r
!
3 m# V

!
2 a

in
r
!
3 m# V

!

Scalar form for one direction:

aM 5 a
out

rm# V 2 a
in

rm# V

No external moments:

0 5
dH
!
CV

dt
1 a

out
r
!
3 m# V

!
2 a

in
r
!
3 m# V

!

A control volume whose moment of inertia I remains constant  
can be treated as a solid body (a fixed-mass system), with a 
net torque of

 M
!
CV 5 ICVa

!
5 a

in
r
!
3 m# V

!
2 a

out
r
!
3 m# V

!
 

acting on the body. This relation is used to determine the 
angular acceleration of a spacecraft when a rocket is fired.
 The linear and angular momentum equations are of funda-
mental importance in the analysis of turbomachinery and are 
used extensively in Chap. 14.

 1. P. K. Kundu, I. M. Cohen, and D. R. Dowling. Fluid 
Mechanics, ed. 5. San Diego, CA: Academic Press, 2011.

 2. Terry Wright, Fluid Machinery: Performance, Analysis, 
and Design, Boca Raton, FL: CRC Press, 1999.
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Newton’s Laws and Conservation of Momentum

6–1C  Express Newton’s first, second, and third laws.

6–2C  Express Newton’s second law of motion for rotat-
ing bodies. What can you say about the angular velocity and 
angular momentum of a rotating nonrigid body of constant 
mass if the net torque acting on it is zero? 

6–3C  Is momentum a vector? If so, in what direction does 
it point?

6–4C  Express the conservation of momentum principle. 
What can you say about the momentum of a body if the net 
force acting on it is zero?

Linear Momentum Equation

6–5C  Two firefighters are fighting a fire with identical 
water hoses and nozzles, except that one is holding the hose 
straight so that the water leaves the nozzle in the same direc-
tion it comes, while the other holds it backward so that the 
water makes a U-turn before being discharged. Which fire-
fighter will experience a greater reaction force?

6–6C  How do surface forces arise in the momentum analy-
sis of a control volume? How can we minimize the number 
of surface forces exposed during analysis?

6–7C  Explain the importance of the Reynolds transport 
theorem in fluid mechanics, and describe how the linear 
momentum equation is obtained from it.

6–8C  What is the importance of the momentum-flux cor-
rection factor in the momentum analysis of flow systems? 
For which type(s) of flow is it significant and must it be con-
sidered in analysis: laminar flow, turbulent flow, or jet flow?

6–9C  Write the momentum equation for steady one-
dimensional flow for the case of no external forces and 
explain the physical significance of its terms.

6–10C  In the application of the momentum equation, 
explain why we can usually disregard the atmospheric pres-
sure and work with gage pressures only.

6–11C  A rocket in space (no friction or resistance to 
motion) can expel gases relative to itself at some high veloc-
ity V. Is V the upper limit to the rocket’s ultimate velocity?

6–12C  Describe in terms of momentum and airflow how a 
helicopter is able to hover.

PROBLEMS*

* Problems designated by a “C” are concept questions, and 

students are encouraged to answer them all. Problems designated 

by an “E” are in English units, and the SI users can ignore them. 

Problems with the  icon are solved using EES, and complete 

solutions together with parametric studies are included on the 

text website. Problems with the  icon are comprehensive in 

nature and are intended to be solved with an equation solver 

such as EES.

6–13C  Does it take more, equal, or less power for a heli-
copter to hover at the top of a high mountain than it does at 
sea level? Explain.

6–14C  In a given location, would a helicopter require more 
energy in summer or winter to achieve a specified perform-
ance? Explain.

6–15C  A horizontal water jet from a nozzle of constant exit 
cross section impinges normally on a stationary vertical flat 
plate. A certain force F is required to hold the plate against 
the water stream. If the water velocity is doubled, will the 
necessary holding force also be doubled? Explain.

6–16C  Describe body forces and surface forces, and 
explain how the net force acting on a control volume is deter-
mined. Is fluid weight a body force or surface force? How 
about pressure? 

6–17C  A constant-velocity horizontal water jet from a sta-
tionary nozzle impinges normally on a vertical flat plate that 
rides on a nearly frictionless track. As the water jet hits the 
plate, it begins to move due to the water force. Will the accel-
eration of the plate remain constant or change? Explain.

FIGURE P6–17C

Nozzle

Water jet

6–18C  A horizontal water jet of constant velocity V from 
a stationary nozzle impinges normally on a vertical flat plate 
that rides on a nearly frictionless track. As the water jet hits 

FIGURE P6–12C
© JupiterImages/ Thinkstock/Alamy RF
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negligible. Determine (a) the gage pressure at the center of 
the inlet of the elbow and (b) the anchoring force needed to 
hold the elbow in place. Take the momentum-flux correction 
factor to be 1.03 at both the inlet and the outlet.

FIGURE P6–22

Water
40 kg/s

50 cm

6–23  Repeat Prob. 6–22 for the case of another (identical) 
elbow attached to the existing elbow so that the fluid makes a 
U-turn.  Answers: (a) 9.81 kPa, (b) 497 N

6–24E  A horizontal water jet impinges against a vertical 
flat plate at 25 ft/s and splashes off the sides in the verti-
cal plane. If a horizontal force of 350 lbf is required to hold 
the plate against the water stream, determine the volume flow 
rate of the water.

6–25  A reducing elbow in a horizontal pipe is used to deflect 
water flow by an angle u 5 45° from the flow direction while 
accelerating it. The elbow discharges water into the atmo-
sphere. The cross- sectional area of the elbow is 150 cm2 at the 
inlet and 25 cm2 at the exit. The elevation difference between 
the centers of the exit and the inlet is 40 cm. The mass of the 
elbow and the water in it is 50 kg. Determine the anchoring 
force needed to hold the elbow in place. Take the momentum-
flux correction factor to be 1.03 at both the inlet and outlet.

FIGURE P6–25

150 cm2
40 cm

45°

25 cm2

Water
30.0 kg/s

6–26  Repeat Prob. 6–25 for the case of u 5 110°.

6–27  Water accelerated by a nozzle to 35 m/s strikes the 
vertical back surface of a cart moving horizontally at a con-
stant velocity of 10 m/s in the flow direction. The mass flow 
rate of water through the stationary nozzle is 30 kg/s. After 
the strike, the water stream splatters off in all directions in 

the plate, it begins to move due to the water force. What is 
the highest velocity the plate can attain? Explain.

6–19  Water enters a 10-cm-diameter pipe steadily with a 
uniform velocity of 3 m/s and exits with the turbulent flow 
velocity distribution given by u 5 umax (1 2 r/R)1/7. If the 
pressure drop along the pipe is 10 kPa, determine the drag 
force exerted on the pipe by water flow.

6–20  A 2.5-cm-diameter horizontal water jet with a speed 
of Vj 5 40 m/s relative to the ground is deflected by a 60° 
stationary cone whose base diameter is 25 cm. Water velocity 
along the cone varies linearly from zero at the cone surface 
to the incoming jet speed of 40 m/s at the free surface. Disre-
garding the effect of gravity and the shear forces, determine 
the horizontal force F needed to hold the cone stationary.

FIGURE P6–20

q 5 60°

Dc 5 25 cm
F

Water jet, Vj

Vj

6–21  A horizontal water jet of constant velocity V impinges 
normally on a vertical flat plate and splashes off the sides in 
the vertical plane. The plate is moving toward the oncoming 
water jet with velocity 1

2V. If a force F is required to maintain 
the plate stationary, how much force is required to move the 
plate toward the water jet?

FIGURE P6–21

Water jet

1
2

V

V

6–22  A 90° elbow in a horizontal pipe is used to direct 
water flow upward at a rate of 40 kg/s. The diameter of the 
entire elbow is 10 cm. The elbow discharges water into the 
atmosphere, and thus the pressure at the exit is the local 
atmospheric pressure. The elevation difference between the 
centers of the exit and the inlet of the elbow is 50 cm. The 
weight of the elbow and the water in it is considered to be 
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splatters in the plane of the retreating plate. Determine 
(a) the acceleration of the plate when the jet first strikes it 
(time 5 0), (b) the time it takes for the plate to reach a veloc-
ity of 9 m/s, and (c) the plate velocity 20 s after the jet first 
strikes the plate. For simplicity, assume the velocity of the 
jet is increased as the cart moves such that the impulse force 
exerted by the water jet on the plate remains constant.

6–32E  A fan with 24-in-diameter blades moves 2000 cfm 
(cubic feet per minute) of air at 70°F at sea level. Determine 
(a) the force required to hold the fan and (b) the minimum 
power input required for the fan. Choose a control volume 
sufficiently large to contain the fan, with the inlet sufficiently 
far upstream so that the gage pressure at the inlet is nearly 
zero. Assume air approaches the fan through a large area with 
negligible velocity and air exits the fan with a uniform veloc-
ity at atmospheric pressure through an imaginary cylinder 
whose diameter is the fan blade diameter.  Answers: (a) 0.820 lbf, 

(b) 5.91 W

6–33E  A 3-in-diameter horizontal jet of water, with veloc-
ity 140 ft/s, strikes a bent plate, which deflects the water by 
135° from its original direction. How much force is required 
to hold the plate against the water stream and what is its 
direction? Disregard frictional and gravitational effects.

6–34  Firefighters are holding a nozzle at the end of a hose 
while trying to extinguish a fire. If the nozzle exit diameter 
is 8 cm and the water flow rate is 12 m3/min, determine 
(a) the average water exit velocity and (b) the horizontal 
resistance force required of the firefighters to hold the nozzle.  
Answers: (a) 39.8 m/s, (b) 7958 N

FIGURE P6–34

12 m3/min

6–35  A 5-cm-diameter horizontal jet of water with a velocity 
of 40 m/s relative to the ground strikes a flat plate that is mov-
ing in the same direction as the jet at a velocity of 10 m/s. 
The water splatters in all directions in the plane of the plate. 
How much force does the water stream exert on the plate?

6–36  Reconsider Prob. 6–35. Using EES (or other) 
software, investigate the effect of the plate 

velocity on the force exerted on the plate. Let the plate veloc-
ity vary from 0 to 30 m/s, in increments of 3 m/s. Tabulate 
and plot your results.

the plane of the back surface. (a) Determine the force that 
needs to be applied by the brakes of the cart to prevent it 
from accelerating. (b) If this force were used to generate 
power instead of wasting it on the brakes, determine the 
maximum amount of power that could ideally be generated.   
Answers: (a) 2536 N, (b) 5.36 kW

FIGURE P6–27

35 m/s
10 m/s

Water jet

6–28  Reconsider Prob. 6–27. If the mass of the cart is 
400 kg and the brakes fail, determine the acceleration of the 
cart when the water first strikes it. Assume the mass of water 
that wets the back surface is negligible.

6–29E  A 100-ft3/s water jet is moving in the positive 
x-direction at 18 ft/s. The stream hits a stationary splitter, 
such that half of the flow is diverted upward at 45° and the 
other half is directed downward, and both streams have a final 
average speed of 18 ft/s. Disregarding gravitational effects, 
determine the x- and z-components of the force required to 
hold the splitter in place against the water force.

FIGURE P6–29E

100 ft3/s

18 ft/s

Splitter
45°

45°
x

z

6–30E  Reconsider Prob. 6–29E. Using EES (or other) 
software, investigate the effect of the splitter 

angle on the force exerted on the splitter in the incoming 
flow direction. Let the half splitter angle vary from 0° to 
180° in increments of 10°. Tabulate and plot your results, and 
draw some conclusions.

6–31  A horizontal 5-cm-diameter water jet with a velocity 
of 18 m/s impinges normally upon a vertical plate of mass 
1000 kg. The plate rides on a nearly frictionless track and is 
initially stationary. When the jet strikes the plate, the plate 
begins to move in the direction of the jet. The water always 
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6–40  Water is flowing through a 10-cm-diameter water pipe 
at a rate of 0.1 m3/s. Now a diffuser with an outlet diameter 
of 20 cm is bolted to the pipe in order to slow down water, 
as shown in Fig. P6–40. Disregarding frictional effects, deter-
mine the force exerted on the bolts due to the water flow.

FIGURE P6–40

d 5 10 cm D 5 20 cm
Diffuser

6–41  The weight of a water tank open to the atmosphere is 
balanced by a counterweight, as shown in Fig. P6–41. There 
is a 4-cm hole at the bottom of the tank with a discharge 
coefficient of 0.90, and water level in the tank is maintained 
constant at 50 cm by water entering the tank horizontally. 
Determine how much mass must be added to or removed 
from the counterweight to maintain balance when the hole at 
the bottom is opened.

FIGURE P6–41

Water h 5 50 cm

W

Hole, d 5 4 cm

6–42  Commercially available large wind turbines have 
blade span diameters larger than 100 m and 

generate over 3 MW of electric power at peak design conditions. 

6–37E  A 3-in-diameter horizontal water jet having a velocity 
of 90 ft/s strikes a curved plate, which deflects the water 180° 
at the same speed. Ignoring the frictional effects, determine the 
force required to hold the plate against the water stream.

FIGURE P6–37

90 ft/s

90 ft/s

3 in

Water jet

6–38  An unloaded helicopter of mass 12,000 kg hovers 
at sea level while it is being loaded. In the unloaded hover 
mode, the blades rotate at 550 rpm. The horizontal blades 
above the helicopter cause a 18-m-diameter air mass to move 
downward at an average velocity proportional to the over-
head blade rotational velocity (rpm). A load of 14,000 kg is 
loaded onto the helicopter, and the helicopter slowly rises. 
Determine (a) the volumetric airflow rate downdraft that the 
helicopter generates during unloaded hover and the required 
power input and (b) the rpm of the helicopter blades to hover 
with the 14,000-kg load and the required power input. Take 
the density of atmospheric air to be 1.18 kg/m3. Assume air 
approaches the blades from the top through a large area with 
negligible velocity and air is forced by the blades to move 
down with a uniform velocity through an imaginary cylinder 
whose base is the blade span area.

FIGURE P6–38

18 m

Load
14,000 kg

6–39  Reconsider the helicopter in Prob. 6–38, except that 
it is hovering on top of a 2800-m-high mountain where the 
air density is 0.928 kg/m3. Noting that the unloaded heli-
copter blades must rotate at 550 rpm to hover at sea level, 
determine the blade rotational velocity to hover at the higher 
altitude. Also determine the percent increase in the required 
power input to hover at 3000-m altitude relative to that at sea 
level.  Answers: 620 rpm, 12.8 percent FIGURE P6–42

30 km/h

60 m
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6–45  Consider the curved duct of Prob. 6–44, except allow 
the cross-sectional area to vary along the duct (A1 2 A2). (a) 
Write an expression for the horizontal force Fx of the fluid 
on the walls of the duct in terms of the given variables. (b) 
Verify your expression by plugging in the following values: 
r 5 998.2 kg/m3, A1 5 0.025 m2, A2 5 0.015 m2, b1 5 1.02, 
b2 5 1.04, V1 5 20 m/s, P1,gage 5 88.34 kPa, and P2,gage 5 
67.48 kPa.  Answer: (b) Fx 5 30,700 N to the right

6–46  As a follow-up to Prob. 6 –44, it turns out that for a 
large enough area ratio A2/A1, the inlet pressure is actually 
smaller than the outlet pressure! Explain how this can be true 
in light of the fact that there is friction and other irrevers-
ibilities due to turbulence, and pressure must be lost along the 
axis of the duct to overcome these irreversibilities.

6–47  An incompressible fluid of density r and viscosity m 
flows through a curved duct that turns the flow through angle u. 
The cross-sectional area also changes. The average velocity, 
momentum flux correction factor, gage pressure, and area 
are known at the inlet (1) and outlet (2), as in Fig. P6–47. (a) 
Write an expression for the horizontal force Fx of the fluid on 
the walls of the duct in terms of the given variables. (b) Verify 
your expression by plugging in the following values: u 51358, 
r 5 998.2 kg/m3, m 5 1.003 3 1023 kg/m·s, A1 5 0.025 m2, 
A2 5 0.050 m2, b1 5 1.01, b2 5 1.03, V1 5 6 m/s, P1,gage 5 
78.47 kPa, and P2,gage 5 65.23 kPa. (Hint: You will first need 
to solve for V2.) (c) At what turning angle is the force maxi-
mized?  Answers: (b) Fx 5 5500 N to the right, (c) 1808

FIGURE P6–47

V1

A1

Fx

V2, b2, P2,gage

P1,gage

A2

+

b1

q

6–48  Water of density r 5 998.2 kg/m3 flows through a 
fireman’s nozzle—a converging section of pipe that accel-
erates the flow. The inlet diameter is d1 5 0.100 m, and 
the outlet diameter is d2 5 0.050 m. The average velocity, 
momentum flux correction factor, and gage pressure are 
known at the inlet (1) and outlet (2), as in Fig. P6–48. (a) 
Write an expression for the horizontal force Fx of the fluid 
on the walls of the nozzle in terms of the given variables. (b) 
Verify your expression by plugging in the following values: 
b1 5 1.03, b2 5 1.02, V1 5 4 m/s, P1,gage 5 123,000 Pa, and 
P2,gage 5 0 Pa.  Answer: (b) Fx 5 583 N to the right

Consider a wind turbine with a 60-m blade span subjected to 
30-km/h steady winds. If the combined turbine–generator 
efficiency of the wind turbine is 32 percent, determine (a) the 
power generated by the turbine and (b) the horizontal force 
exerted by the wind on the supporting mast of the turbine. 
Take the density of air to be 1.25 kg/m3, and disregard fric-
tional effects on mast.

6–43  Water enters a centrifugal pump axially at atmo-
spheric pressure at a rate of 0.09 m3/s and at a velocity of 
5 m/s, and leaves in the normal direction along the pump cas-
ing, as shown in Fig. P6–43. Determine the force acting on 
the shaft (which is also the force acting on the bearing of the 
shaft) in the axial direction.

FIGURE P6–43

n⋅

Blade

Shaft

0.09 m3/S

Impeller
shroud

6–44  An incompressible fluid of density r and viscosity m 
flows through a curved duct that turns the flow 1808. The duct 
cross-sectional area remains constant. The average velocity, 
momentum flux correction factor, and gage pressure are known 
at the inlet (1) and outlet (2), as in Fig. P6–44. (a) Write an 
expression for the horizontal force Fx of the fluid on the walls of 
the duct in terms of the given variables. (b) Verify your expres-
sion by plugging in the following values: r 5 998.2 kg/m3, 
m 5 1.003 3 1023 kg/m · s, A1 5 A2 5 0.025 m2, b1 5 1.01, 
b2 5 1.03, V1 5 10 m/s, P1,gage 5 78.47 kPa, and P2,gage 5 
65.23 kPa.  Answer: (b) Fx 5 8680 N to the right

FIGURE P6–44

V1

V2

P1,gage

P2,gage

+
Fx

A1

A2

b1

b2
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6–54C  Consider two rigid bodies having the same mass and 
angular speed. Do you think these two bodies must have the 
same angular momentum? Explain.

6–55  Water is flowing through a 15-cm-diameter pipe that 
consists of a 3-m-long vertical and 2-m-long horizontal sec-
tion with a 90° elbow at the exit to force the water to be dis-
charged downward, as shown in Fig. P6–55, in the vertical 
direction. Water discharges to atmospheric air at a velocity 
of 7 m/s, and the mass of the pipe section when filled with 
water is 15 kg per meter length. Determine the moment act-
ing at the intersection of the vertical and horizontal sections 
of the pipe (point A). What would your answer be if the flow 
were discharged upward instead of downward?

FIGURE P6–55

2 m

15 cm
3 m

A

7 m/s

6–56E  A large lawn sprinkler with two identical arms is 
used to generate electric power by attaching a generator to its 
rotating head. Water enters the sprinkler from the base along 
the axis of rotation at a rate of 5 gal/s and leaves the nozzles 
in the tangential direction. The sprinkler rotates at a rate of 
180 rpm in a horizontal plane. The diameter of each jet is 
0.5 in, and the normal distance between the axis of rotation 
and the center of each nozzle is 2 ft. Determine the maximum 
possible electrical power produced.

6–57E  Reconsider the lawn sprinkler in Prob. 6–56E. If the 
rotating head is somehow stuck, determine the moment act-
ing on the head. 

6–58  The impeller of a centrifugal pump has inner and 
outer diameters of 13 and 30 cm, respectively, and a flow rate 
of 0.15 m3/s at a rotational speed of 1200 rpm. The blade 
width of the impeller is 8 cm at the inlet and 3.5 cm at the 
outlet. If water enters the impeller in the radial direction and 
exits at an angle of 60° from the radial direction, determine 
the minimum power requirement for the pump.

6–59  The impeller of a centrifugal blower has a radius of 
18 cm and a blade width of 6.1 cm at the inlet, and a radius of 
30 cm and a blade width of 3.4 cm at the outlet. The blower 
delivers atmospheric air at 20°C and 95 kPa. Disregarding 
any losses and assuming the tangential components of air 

FIGURE P6–48

L

V1

A1

P1

V2

r

x

A2
F

P2

d1

6–49  Water flowing in a horizontal 25-cm-diameter pipe at 
8 m/s and 300 kPa gage enters a 90° bend reducing section, 
which connects to a 15-cm-diameter vertical pipe. The inlet 
of the bend is 50 cm above the exit. Neglecting any frictional 
and gravitational effects, determine the net resultant force 
exerted on the reducer by the water. Take the momentum-flux 
correction factor to be 1.04.

6–50  A sluice gate, which controls flow rate in a channel 
by simply raising or lowering a vertical plate, is commonly 
used in irrigation systems. A force is exerted on the gate due 
to the difference between the water heights y1 and y2 and the 
flow velocities V1 and V2 upstream and downstream from 
the gate, respectively. Take the width of the sluice gate (into 
the page) to be w. Wall shear stresses along the channel walls 
may be ignored, and for simplicity, we assume steady, uni-
form flow at locations 1 and 2. Develop a relationship for the 
force FR acting on the sluice gate as a function of depths y1 
and y2, mass flow rate m

#
, gravitational constant g, gate width 

w, and water density r.

FIGURE P6–50

y1
V1

Sluice gate

V2y2

Angular Momentum Equation

6–51C  How is the angular momentum equation obtained 
from Reynolds transport equations?

6–52C  Express the angular momentum equation in scalar 
form about a specified axis of rotation for a fixed control vol-
ume for steady and uniform flow. 

6–53C  Express the unsteady angular momentum equation in 
vector form for a control volume that has a constant moment 
of inertia I, no external moments applied, one outgoing uni-
form flow stream of velocity V

→
, and mass flow rate m

.
.
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FIGURE P6–62

V

 = 50°a2

1

2

Impeller region

r1

r2

V

v

→

→

6–63  Reconsider Prob. 6–62. For the specified flow 
rate, investigate the effect of discharge angle a2 

on the minimum power input requirements. Assume the air to 
enter the impeller in the radial direction (a1 5 0°), and vary 
a2 from 0° to 85° in increments of 5°. Plot the variation of 
power input versus a2, and discuss your results. 

6–64E  Water enters the impeller of a centrifugal pump 
radially at a rate of 45 cfm (cubic feet per minute) when 
the shaft is rotating at 500 rpm. The tangential component 
of absolute velocity of water at the exit of the 2-ft outer 
diameter impeller is 110 ft/s. Determine the torque applied 
to the impeller and the minimum power input to the pump.  
Answers: 160 lbf?ft, 11.3 kW

6–65  A lawn sprinkler with three identical arms is used 
to water a garden by rotating in a horizontal plane by the 
impulse caused by water flow. Water enters the sprinkler 
along the axis of rotation at a rate of 60 L/s and leaves the 
1.5-cm-diameter nozzles in the tangential direction. The 
bearing applies a retarding torque of T0 5 50 N · m due to 
friction at the anticipated operating speeds. For a normal dis-
tance of 40 cm between the axis of rotation and the center of 
the nozzles, determine the angular velocity of the sprinkler 
shaft. 

6–66  Pelton wheel turbines are commonly used in hydro-
electric power plants to generate electric power. In these 
turbines, a high-speed jet at a velocity of Vj impinges on 
buckets, forcing the wheel to rotate. The buckets reverse the 
direction of the jet, and the jet leaves the bucket making an 
angle b with the direction of the jet, as shown in Fig. P6–66. 
Show that the power produced by a Pelton wheel of radius r 
rotating steadily at an angular velocity of v is W

. 
shaft 5 rvrV

.

(Vj 2 vr)(1 2 cos b), where r is the density and V
.
 is the 

volume flow rate of the fluid. Obtain the numerical value 
for r 5 1000 kg/m3, r 5 2 m, V

.
 510 m3/s, n

.
 5  150  rpm, 

b 5 160°, and Vj 5 50 m/s.

velocity at the inlet and the outlet to be equal to the impel-
ler velocity at respective locations, determine the volumet-
ric flow rate of air when the rotational speed of the shaft is 
900 rpm and the power consumption of the blower is 120 W. 
Also determine the normal components of velocity at the 
inlet and outlet of the impeller.

FIGURE P6–59

Outlet

ω 
Inlet

6–60  Water enters vertically and steadily at a rate of 35 L/s 
into the sprinkler shown in Fig. P6–60 with unequal arms 
and unequal discharge areas. The smaller jet has a discharge 
area of 3 cm2 and a normal distance of 50 cm from the axis 
of rotation. The larger jet has a discharge area of 5 cm2 and 
a normal distance of 35 cm from the axis of rotation. Dis-
regarding any frictional effects, determine (a) the rotational 
speed of the sprinkler in rpm and (b) the torque required to 
prevent the sprinkler from rotating.

FIGURE P6–60

50 cm 35 cm

Water
jet

Water
jet

6–61  Repeat Prob. 6–60 for a water flow rate of 50 L/s.

6–62  Consider a centrifugal blower that has a radius of 20 cm 
and a blade width of 8.2 cm at the impeller inlet, and a 
radius of 45 cm and a blade width of 5.6 cm at the outlet. 
The blower delivers air at a rate of 0.70 m3/s at a rotational 
speed of 700 rpm. Assuming the air to enter the impeller in 
the radial direction and to exit at an angle of 50° from the 
radial direction, determine the minimum power consumption 
of the blower. Take the density of air to be 1.25 kg/m3.
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moving to the left at Vc 5 10 m/s. Determine the external 
force, F, needed to maintain the motion of the cone. Disregard 
the gravity and surface shear effects and assume the cross-
sectional area of water jet normal to the direction of motion 
remains constant throughout the flow.  Answer: 3240 N

FIGURE P6–70

q 5 40°

Vc 5 10 m/s

F

Water jet, Vj

6–71  Water enters vertically and steadily at a rate of 
10 L/s into the sprinkler shown in Fig. P6–71. Both water 
jets have a diameter of 1.2 cm. Disregarding any frictional 
effects, determine (a) the rotational speed of the sprinkler 
in rpm and (b) the torque required to prevent the sprinkler 
from rotating.

FIGURE P6–71

40 cm 40 cm

60°

60°

6–72  Repeat Prob. 6–71 for the case of unequal arms—the 
left one being 60 cm and the right one 20 cm from the axis 
of rotation.

6–73  A 6-cm-diameter horizontal water jet having a veloc-
ity of 25 m/s strikes a vertical stationary flat plate. The water 
splatters in all directions in the plane of the plate. How much 
force is required to hold the plate against the water stream?  
Answers: 1770 N

6–74  Consider steady developing laminar flow of water in 
a constant-diameter horizontal discharge pipe attached to a 
tank. The fluid enters the pipe with nearly uniform velocity V 
and pressure P1. The velocity profile becomes parabolic 
after a certain distance with a momentum correction factor 

FIGURE P6–66

Vj − rv

v

b

Vj

r

Nozzle

Shaft

ω r

6–67  Reconsider Prob. 6–66. The maximum efficiency 
of the turbine occurs when b 5 180°, but this is 

not practical. Investigate the effect of b on the power genera-
tion by allowing it to vary from 0° to 180°. Do you think we 
are wasting a large fraction of power by using buckets with a 
b of 160°?

Review Problems

6–68  Water flowing steadily at a rate of 0.16 m3/s is deflected 
downward by an angled elbow as shown in Fig. P6–68. 
For D 5 30 cm, d 5 10 cm, and h 5 50 cm, determine the 
force acting on the flanges of the elbow and the angle its line 
of action makes with the horizontal. Take the internal vol-
ume of the elbow to be 0.03 m3 and disregard the weight of 
the elbow material and the frictional effects. 

FIGURE P6–68

Flange

Bolts

60°

h

d

D

6–69  Repeat Prob. 6–68 by taking into consideration the 
weight of the elbow whose mass is 5 kg.

6–70  A 12-cm diameter horizontal water jet with a speed of 
Vj 5 25 m/s relative to the ground is deflected by a 40° cone 
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FIGURE P6–76

300 m/s

150°

Thrust
reverser

Thrust
reverser

6–77  Reconsider Prob. 6–76. Using EES (or other) 
software, investigate the effect of thrust reverser 

angle on the braking force exerted on the airplane. Let the 
reverser angle vary from 0° (no reversing) to 180° (full 
reversing) in increments of 10°. Tabulate and plot your results 
and draw conclusions.

6–78E  A spacecraft cruising in space at a constant veloc-
ity of 2000 ft/s has a mass of 25,000 lbm. To slow down 
the spacecraft, a solid fuel rocket is fired, and the combus-
tion gases leave the rocket at a constant rate of 150 lbm/s 
at a velocity of 5000 ft/s in the same direction as the space-
craft for a period of 5 s. Assuming the mass of the spacecraft 
remains constant, determine (a) the deceleration of the space-
craft during this 5-s period, (b) the change of velocity of the 
spacecraft during this time period, and (c) the thrust exerted 
on the spacecraft.

6–79  A 60-kg ice skater is standing on ice with ice skates 
(negligible friction). She is holding a flexible hose (essen-
tially weightless) that directs a 2-cm-diameter stream of 
water horizontally parallel to her skates. The water velocity 
at the hose outlet is 10 m/s relative to the skater. If she is 
initially standing still, determine (a) the velocity of the skater 
and the distance she travels in 5  s and (b) how long it will 
take to move 5 m and the velocity at that moment.  Answers: 

(a) 2.62 m/s, 6.54 m, (b) 4.4 s, 2.3 m/s

FIGURE P6–79

10 m/s

Ice skater

D = 2 cm

of 2 while the pressure drops to P2. Obtain a relation for 
the horizontal force acting on the bolts that hold the pipe 
attached to the tank.

FIGURE P6–74

z

r

6–75  A tripod holding a nozzle, which directs a 5-cm-
diameter stream of water from a hose, is shown in Fig. P6–75. 
The nozzle mass is 10 kg when filled with water. The tripod 
is rated to provide 1800 N of holding force. A firefighter was 
standing 60 cm behind the nozzle and was hit by the noz-
zle when the tripod suddenly failed and released the nozzle. 
You have been hired as an accident reconstructionist and, 
after testing the tripod, have determined that as water flow 
rate increased, it did collapse at 1800 N. In your final report 
you must state the water velocity and the flow rate consistent 
with the failure and the nozzle velocity when it hit the fire-
fighter. For simplicity, ignore pressure and momentum effects 
in the upstream portion of the hose.  Answers: 30.3 m/s, 

0.0595 m3/s, 14.7 m/s

FIGURE P6–75

Nozzle

Tripod

D = 5 cm

6–76  Consider an airplane with a jet engine attached to the 
tail section that expels combustion gases at a rate of 18 kg/s 
with a velocity of V 5 300 m/s relative to the plane. Dur-
ing landing, a thrust reverser (which serves as a brake for the 
aircraft and facilitates landing on a short runway) is lowered 
in the path of the exhaust jet, which deflects the exhaust from 
rearward to 150°. Determine (a) the thrust (forward force) 
that the engine produces prior to the insertion of the thrust 
reverser and (b) the braking force produced after the thrust 
reverser is deployed.
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down from the building top. He builds a square platform 
and mounts four 4-cm-diameter nozzles pointing down at 
each corner. By connecting hose branches, a water jet with 
15-m/s velocity can be produced from each nozzle. Jones, the 
platform, and the nozzles have a combined mass of 150 kg. 
Determine (a) the minimum water jet velocity needed to raise 
the system, (b) how long it takes for the system to rise 10 m 
when the water jet velocity is 18 m/s and the velocity of 
the platform at that moment, and (c) how much higher will 
the momentum raise Jones if he shuts off the water at the 
moment the platform reaches 10 m above the ground. How 
much time does he have to jump from the platform to the 
roof?  Answers: (a) 17.1 m/s, (b) 4.37 s, 4.57 m/s, (c) 1.07 m, 

0.933 s

6–83E  An engineering student considers using a fan as a 
levitation demonstration. She plans to face the box-enclosed 
fan so the air blast is directed face down through a 3-ft-
diameter blade span area. The system weighs 5 lbf, and the 
student will secure the system from rotating. By increasing 
the power to the fan, she plans to increase the blade rpm and 
air exit velocity until the exhaust provides sufficient upward 
force to cause the box fan to hover in the air. Determine 
(a)  the air exit velocity to produce 5 lbf, (b) the volumetric 
flow rate needed, and (c) the minimum mechanical power 
that must be supplied to the airstream. Take the air density to 
be 0.078 lbm/ft3.

FIGURE P6–83E

600 rpm

6–84  Nearly frictionless vertical guide rails maintain a 
plate of mass mp in a horizontal position, such that it can 
slide freely in the vertical direction. A nozzle directs a water 
stream of area A against the plate underside. The water jet 
splatters in the plate plane, applying an upward force against 
the plate. The water flow rate m

.
 (kg/s) can be controlled. 

Assume that distances are short, so the velocity of the rising jet 
can be considered constant with height. (a) Determine the min-
imum mass flow rate m

.
min necessary to just levitate the plate 

and obtain a relation for the steady-state velocity of the upward 
moving plate for m

.
 . m

.
min. (b) At time t 5 0, the plate is at 

rest, and the water jet with m
.
 . m

.
min is suddenly turned on. 

Apply a force balance to the plate and obtain the integral that 
relates velocity to time (do not solve).

6–80  A 5-cm-diameter horizontal jet of water, with velocity 
30 m/s, strikes the tip of a horizontal cone, which deflects the 
water by 45° from its original direction. How much force is 
required to hold the cone against the water stream?

6–81  Water is flowing into and discharging from a pipe 
U-section as shown in Fig. P6–81. At flange (1), the total 
absolute pressure is 200 kPa, and 55 kg/s flows into the 
pipe. At flange (2), the total pressure is 150 kPa. At location 
(3), 15 kg/s of water discharges to the atmosphere, which is 
at 100 kPa. Determine the total x- and z-forces at the two 
flanges connecting the pipe. Discuss the significance of grav-
ity force for this problem. Take the momentum-flux correc-
tion factor to be 1.03 throughout the pipes.

FIGURE P6–81

10 cm

3 cm

15 kg/s

40 kg/s

55 kg/s

g

5 cm

1

2

3

x

z

6–82  Indiana Jones needs to ascend a 10-m-high building. 
There is a large hose filled with pressurized water hanging 

FIGURE P6–82

D = 4 cm

18 m/s
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and develop a relation for the soldier’s velocity after he opens 
the parachute at time t 5 0.

Answer:   V 5 VF 
VT 1 VF 1 (VT 2 VF)e

22gt/VF

VT 1 VF 2 (VT 2 VF)e
22gt/VF

6–90  A horizontal water jet with a flow rate of V
.
 and cross-

sectional area of A drives a covered cart of mass mc along a 
level and nearly frictionless path. The jet enters a hole at the 
rear of the cart and all water that enters the cart is retained, 
increasing the system mass. The relative velocity between the 
jet of constant velocity VJ and the cart of variable velocity V 
is VJ 2 V. If the cart is initially empty and stationary when 
the jet action is initiated, develop a relation (integral form is 
acceptable) for cart velocity versus time.

FIGURE P6–90

V

Cart
mc

A VJ

6–91  Water accelerated by a nozzle enters the impeller of a 
turbine through its outer edge of diameter D with a velocity 
of V making an angle a with the radial direction at a mass 
flow rate of m

.
. Water leaves the impeller in the radial direc-

tion. If the angular speed of the turbine shaft is n
.
, show that 

the maximum power that can be generated by this radial tur-
bine is W

.
shaft 5 pn

.
m
.
DV sin a.

6–92  Water enters a two-armed lawn sprinkler along the 
vertical axis at a rate of 75 L/s, and leaves the sprinkler noz-
zles as 2-cm diameter jets at an angle of u from the tangential 
direction, as shown in Fig. P6–92. The length of each sprinkler 

FIGURE P6–84

mp

Nozzle

m⋅

Guide
rails

6–85  A walnut with a mass of 50 g requires a force of 200 
N applied continuously for 0.002 s to be cracked. If walnuts 
are to be cracked by dropping them from a high place onto a 
hard surface, determine the minimum height required. Disre-
gard air friction.

6–86  A 7-cm diameter vertical water jet is injected upwards 
by a nozzle at a speed of 15 m/s. Determine the maximum 
weight of a flat plate that can be supported by this water jet 
at a height of 2 m from the nozzle.

6–87  Repeat Prob. 6–86 for a height of 8 m from the nozzle.

6–88  Show that the force exerted by a liquid jet on a sta-
tionary nozzle as it leaves with a velocity V is proportional to 
V 2 or, alternatively, to m

. 2. Assume the jet stream is perpen-
ticular to the incoming liquid flow line.

6–89  A soldier jumps from a plane and opens his parachute 
when his velocity reaches the terminal velocity VT. The para-
chute slows him down to his landing velocity of VF. After the 
parachute is deployed, the air resistance is proportional to the 
velocity squared (i.e., F 5 kV2). The soldier, his parachute, 
and his gear have a total mass of m. Show that k 5 mg/V 2

F 

FIGURE P6–89
© Corbis RF FIGURE P6–92

θ

θ

r = 0.52 m
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FIGURE P6–96

n

Blade

Shaft

0.3 m3/S

75°

6–97  Water flows steadily through a splitter as shown in 
Fig. P6–97 with V

#
1 5 0.08 m3/s, V

#
2 5 0.05 m3/s, D1 5 D2 5 

12 cm, D3 5 10 cm. If the pressure readings at the inlet and 
outlets of the splitter are P1 5 100 kPa, P2 5 90 kPa and 
P3 5 80 kPa, determine external force needed to hold the 
device fixed. Disregard the weight effects.

FIGURE P6–97

P1

P3y

x

30°

P2

1

3

2

6–98  Water is discharged from a pipe through a 1.2-m long 
5-mm wide rectangular slit underneath of the pipe. Water dis-
charge velocity profile is parabolic, varying from 3 m/s on one 
end of the slit to 7 m/s on the other, as shown in Fig. P6–98. 

arm is 0.52 m. Disregarding any frictional effects, determine 
the rate of rotation n

.
 of the sprinkler in rev/min for (a) u 5 

0°, (b) u 5 30°, and (c) u 5 60°.

6–93  Reconsider Prob. 6–92. For the specified flow 
rate, investigate the effect of discharge angle u 

on the rate of rotation n
.
 by varying u from 0° to 90° in incre-

ments of 10°. Plot the rate of rotation versus u, and discuss 
your results.

6–94  A stationary water tank of diameter D is mounted on 
wheels and is placed on a nearly frictionless level surface. 
A smooth hole of diameter Do near the bottom of the tank 
allows water to jet horizontally and rearward and the water 
jet force propels the system forward. The water in the tank 
is much heavier than the tank-and-wheel assembly, so only 
the mass of water remaining in the tank needs to be consid-
ered in this problem. Considering the decrease in the mass of 
water with time, develop relations for (a) the acceleration, (b) 
the velocity, and (c) the distance traveled by the system as a 
function of time.

6–95  An orbiting satellite has a mass of 3400 kg and is 
traveling at a constant velocity of V0. To alter its orbit, an 
attached rocket discharges 100 kg of gases from the reac-
tion of solid fuel at a speed of 3000 m/s relative to the 
satellite in a direction opposite V0. The fuel discharge rate 
is constant for 3s. Determine (a) the thrust exerted on the 
satellite, (b) the acceleration of the satellite during this 3-s 
period, and (c) the change of velocity of the satellite during 
this time period.

FIGURE P6–95

V0

Vgas Satellite
msat

x

→

→

6–96  Water enters a mixed flow pump axially at a rate of 
0.3 m3/s and at a velocity of 7 m/s, and is discharged to the 
atmosphere at an angle of 75° from the horizontal, as shown 
in Fig. P6–96. If the discharge flow area is half the inlet 
area, determine the force acting on the shaft in the axial 
direction. FIGURE P6–98

Parabolic velocity distribution

1.2 m

V1 5 3 m/s

Slit width 5 5 mm

V2 5 7 m/s
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the reaction force in the horizontal direction required to hold 
the pipe in place is 
(a) 73.7 N (b) 97.1 N (c) 99.2 N (d) 122 N (e) 153 N

6–106  A water jet strikes a stationary horizontal plate verti-
cally at a rate of 18 kg/s with a velocity of 24 m/s. The mass 
of the plate is 10 kg. Assume the water stream moves in the 
horizontal direction after the strike. The force needed to pre-
vent the plate from moving vertically is 
(a) 192 N (b) 240 N (c) 334 N (d) 432 N (e) 530 N

6–107  The velocity of wind at a wind turbine is measured 
to be 6 m/s. The blade span diameter is 24 m and the effi-
ciency of the wind turbine is 29 percent. The density of air is 
1.22 kg/m3. The horizontal force exerted by the wind on the 
supporting mast of the wind turbine is
(a) 2524 N (b) 3127 N (c) 3475 N (d) 4138 N
(e) 4313 N

6–108  The velocity of wind at a wind turbine is measured 
to be 8 m/s. The blade span diameter is 12 m. The density of 
air is 1.2 kg/m3. If the horizontal force exerted by the wind 
on the supporting mast of the wind turbine is 1620 N, the 
efficiency of the wind turbine is
(a) 27.5% (b) 31.7% (c) 29.5% (d) 35.1% (e) 33.8%

6–109  The shaft of a turbine rotates at a speed of 800 rpm. 
If the torque of the shaft is 350 N·m, the shaft power is
(a) 112 kW (b) 176 kW (c) 293 kW (d) 350 kW
(e) 405 kW

6–110  A 3-cm-diameter horizontal pipe attached to a sur-
face makes a 90° turn to a vertical upward direction before 
the water is discharged at a velocity of 9 m/s. The horizon-
tal section is 5 m long and the vertical section is 4 m long. 
Neglecting the mass of the water contained in the pipe, the 
bending moment acting on the base of the pipe on the wall is
(a) 286 N·m (b) 229 N·m (c) 207 N·m
(d) 175 N·m (e) 124 N·m

6–111  A 3-cm-diameter horizontal pipe attached to a sur-
face makes a 90° turn to a vertical upward direction before 
the water is discharged at a velocity of 6 m/s. The horizon-
tal section is 5 m long and the vertical section is 4 m long. 
Neglecting the mass of the pipe and considering the weight 
of the water contained in the pipe, the bending moment act-
ing on the base of the pipe on the wall is
(a) 11.9 N·m (b) 46.7 N·m (c) 127 N·m
(d) 104 N·m (e) 74.8 N·m

6–112  A large lawn sprinkler with four identical arms is 
to be converted into a turbine to generate electric power by 
attaching a generator to its rotating head. Water enters the 
sprinkler from the base along the axis of rotation at a rate of 
15 kg/s and leaves the nozzles in the tangential direction at a 
velocity of 50 m/s relative to the rotating nozzle. The sprin-
kler rotates at a rate of 400 rpm in a horizontal plane. The 
normal distance between the axis of rotation and the center of 
each nozzle is 30 cm. Estimate the electric power produced.

Determine (a) the rate of discharge through the slit and (b) the 
vertical force acting on the pipe due to this discharge process.

Fundamentals of Engineering (FE) Exam Problems

6–99  When determining the thrust developed by a jet 
engine, a wise choice of control volume is
(a) Fixed control volume (b) Moving control volume 
(c) Deforming control volume (d) Moving or deforming 
control volume (e) None of these

6–100  Consider an airplane cruising at 850 km/h to the 
right. If the velocity of exhaust gases is 700 km/h to the left 
relative to the ground, the velocity of the exhaust gases rela-
tive to the nozzle exit is
(a) 1550 km/h (b) 850 km/h (c) 700 km/h
(d) 350 km/h (e) 150 km/h 

6–101  Consider water flow through a horizontal, short 
garden hose at a rate of 30 kg/min. The velocity at the inlet 
is 1.5 m/s and that at the outlet is 14.5 m/s. Disregard the 
weight of the hose and water. Taking the momentum-flux 
correction factor to be 1.04 at both the inlet and the outlet, 
the anchoring force required to hold the hose in place is 
(a) 2.8 N (b) 8.6 N (c) 17.5 N (d) 27.9 N (e) 43.3 N

6–102  Consider water flow through a horizontal, short gar-
den hose at a rate of 30 kg/min. The velocity at the inlet is 
1.5 m/s and that at the outlet is 11.5 m/s. The hose makes 
a 180° turn before the water is discharged. Disregard the 
weight of the hose and water. Taking the momentum-flux 
correction factor to be 1.04 at both the inlet and the outlet, 
the anchoring force required to hold the hose in place is 
(a) 7.6 N (b) 28.4 N (c) 16.6 N (d) 34.1 N
(e) 11.9 N

6–103  A water jet strikes a stationary vertical plate horizon-
tally at a rate of 5 kg/s with a velocity of 35 km/h. Assume 
the water stream moves in the vertical direction after the 
strike. The force needed to prevent the plate from moving 
horizontally is 
(a) 15.5 N (b) 26.3 N (c) 19.7 N (d) 34.2 N (e) 48.6 N

6–104  Consider water flow through a horizontal, short 
garden hose at a rate of 40 kg/min. The velocity at the inlet 
is 1.5 m/s and that at the outlet is 16 m/s. The hose makes 
a 90° turn to a vertical direction before the water is dis-
charged. Disregard the weight of the hose and water. Taking 
the momentum-flux correction factor to be 1.04 at both the 
inlet and the outlet, the reaction force in the vertical direction 
required to hold the hose in place is 
(a) 11.1 N (b) 10.1 N (c) 9.3 N (d) 27.2 N (e) 28.9 N

6–105  Consider water flow through a horizontal, short pipe 
at a rate of 80 kg/min. The velocity at the inlet is 1.5 m/s and 
that at the outlet is 16.5 m/s. The pipe makes a 90° turn to 
a vertical direction before the water is discharged. Disregard 
the weight of the pipe and water. Taking the momentum-flux 
correction factor to be 1.04 at both the inlet and the outlet, 
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at 400 rpm. The tangential component of absolute velocity 
of water at the exit of the 70-cm outer diameter impeller is 
55 m/s. The torque applied to the impeller is
(a) 144 N·m (b) 93.6 N·m (c) 187 N·m
(d) 112 N·m (e) 235 N·m

Design and Essay Problem

6–115  Visit a fire station and obtain information about flow 
rates through hoses and discharge diameters. Using this infor-
mation, calculate the impulse force to which the firefighters 
are subjected when holding a fire hose.

(a) 5430 W (b) 6288 W (c) 6634 W (d) 7056 W 
(e) 7875 W

6–113  Consider the impeller of a centrifugal pump with a 
rotational speed of 900 rpm and a flow rate of 95 kg/min. 
The impeller radii at the inlet and outlet are 7 cm and 16 cm, 
respectively. Assuming that the tangential fluid velocity is 
equal to the blade angular velocity both at the inlet and the 
exit, the power requirement of the pump is
(a) 83 W (b) 291 W (c) 409 W (d) 756 W (e) 1125 W  

6–114  Water enters the impeller of a centrifugal pump 
radially at a rate of 450 L/min when the shaft is rotating 
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