MOMENTUM ANALYSIS
OF FLOW SYSTEMS

hen dealing with engineering problems, it is desirable to obtain
fast and accurate solutions at minimal cost. Most engineering
problems, including those associated with fluid flow, can be ana-
lyzed using one of three basic approaches: differential, experimental, and
control volume. In differential approaches, the problem is formulated accu-
rately using differential quantities, but the solution of the resulting differ-
ential equations is difficult, usually requiring the use of numerical methods
with extensive computer codes. Experimental approaches complemented
with dimensional analysis are highly accurate, but they are typically time
consuming and expensive. The finite control volume approach described in
this chapter is remarkably fast and simple and usually gives answers that are
sufficiently accurate for most engineering purposes. Therefore, despite the
approximations involved, the basic finite control volume analysis performed
with paper and pencil has always been an indispensable tool for engineers.
In Chap. 5, the control volume mass and energy analysis of fluid flow
systems was presented. In this chapter, we present the finite control volume
momentum analysis of fluid flow problems. First we give an overview of
Newton’s laws and the conservation relations for linear and angular momen-
tum. Then using the Reynolds transport theorem, we develop the linear
momentum and angular momentum equations for control volumes and use
them to determine the forces and torques associated with fluid flow.

Steady swimming of the jellyfish Aurelia aurita.
Fluorescent dye placed directly upstream of the
animal is drawn underneath the bell as the body
relaxes and forms vortex rings below the animal
as the body contracts and ejects fluid. The vortex
rings simultaneously induce flows for both
feeding and propulsion.

Adapted from Dabiri et al., J. Exp. Biol. 208: 1257-1265.
Photo credit: Sean P. Colin and John H. Costello.

CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to

] Identify the various kinds of
forces and moments acting on
a control volume

[ ] Use control volume analysis to
determine the forces associated
with fluid flow

(] Use control volume analysis to
determine the moments caused
by fluid flow and the torque
transmitted
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FIGURE 6-1

Linear momentum is the product of
mass and velocity, and its direction
is the direction of velocity.

FIGURE 6-2

Newton’s second law is also expressed
as the rate of change of the momentum
of a body is equal to the net force
acting on it.

6-1 = NEWTON'S LAWS

Newton’s laws are relations between motions of bodies and the forces act-
ing on them. Newton’s first law states that a body at rest remains at rest,
and a body in motion remains in motion at the same velocity in a straight
path when the net force acting on it is zero. Therefore, a body tends to pre-
serve its state of inertia. Newton’s second law states that the acceleration of
a body is proportional to the net force acting on it and is inversely propor-
tional to its mass. Newton’s third law states that when a body exerts a force
on a second body, the second body exerts an equal and opposite force on
the first. Therefore, the direction of an exposed reaction force depends on
the body taken as the system.
For a rigid body of mass m, Newton’s second law is expressed as

dv _ dmv)
dt dt

Newton’s second law: F =md=m (6-1)

where F is the net force acting on the body and a is the acceleration of the
body under the influence of F.

The product of the mass and the velocity of a body is called the linear
momentum or just the momentum of the body. The momentum of a rigid
body of mass m moving with velocity V is mV (Fig. 6-1). Then Newton’s
second law expressed in Eq. 61 can also be stated as the rate of change
of the momentum of a body is equal to the net force acting on the body
(Fig. 6-2). This statement is more in line with Newton’s original statement
of the second law, and it is more appropriate for use in fluid mechanics
when studying the forces generated as a result of velocity changes of fluid
streams. Therefore, in fluid mechanics, Newton’s second law is usually
referred to as the linear momentum equation.

The momentum of a system remains constant only when the net force
acting on it is zero, and thus the momentum of such a system is conserved.
This is known as the conservation of momentum principle. This principle
has proven to be a very useful tool when analyzing collisions such as those
between balls; between balls and rackets, bats, or clubs; and between atoms
or subatomic particles; and explosions such as those that occur in rockets,
missiles, and guns. In fluid mechanics, however, the net force acting on a
system is typically not zero, and we prefer to work with the linear momentum
equation rather than the conservation of momentum principle.

Note that force, acceleration, velocity, and momentum are vector quanti-
ties, and as such they have direction as well as magnitude. Also, momen-
tum is a constant multiple of velocity, and thus the direction of momentum
is the direction of velocity as shown in Fig 6-1. Any vector equation can
be written in scalar form for a specified direction using magnitudes, e.g.,
F, = ma, = d(mV,)/dt in the x-direction.

The counterpart of Newton’s second law for rotating rigid bodies is ex-
pressed as M = Ia, where M is the net moment or torque applied on the
body, I is the moment of inertia of the body about the axis of rotation, and
a is the angular acceleration. It can also be expressed in terms of the rate of
change of angular momentum dH/dt as

dé _ dis)  dH

Angular momentum equation: M=1Iad=1"—= —
§ 4 t dt dt

(6-2)



where @ is the angular velocity. For a rigid body rotating about a fixed x-axis,
the angular momentum equation is written in scalar form as
do, dH,

= - 6-3
dt dt €3

Angular momentum about x-axis: M,

The angular momentum equation can be stated as the rate of change of
the angular momentum of a body is equal to the net torque acting on it
(Fig. 6-3).

The total angular momentum of a rotating body remains constant when
the net torque acting on it is zero, and thus the angular momentum of such
systems is conserved. This is known as the conservation of angular momen-
tum principle and is expressed as Iw = constant. Many interesting phenom-
ena such as ice skaters spinning faster when they bring their arms close to
their bodies and divers rotating faster when they curl after the jump can be
explained easily with the help of the conservation of angular momentum
principle (in both cases, the moment of inertia / is decreased and thus the
angular velocity w is increased as the outer parts of the body are brought
closer to the axis of rotation).

6-2 = CHOOSING A CONTROL VOLUME

We now briefly discuss how to wisely select a control volume. A control
volume can be selected as any arbitrary region in space through which fluid
flows, and its bounding control surface can be fixed, moving, and even
deforming during flow. The application of a basic conservation law is a
systematic procedure for bookkeeping or accounting of the quantity under
consideration, and thus it is extremely important that the boundaries of the
control volume are well defined during an analysis. Also, the flow rate of
any quantity into or out of a control volume depends on the flow velocity
relative to the control surface, and thus it is essential to know if the control
volume remains at rest during flow or if it moves.

Many flow systems involve stationary hardware firmly fixed to a station-
ary surface, and such systems are best analyzed using fixed control volumes.
When determining the reaction force acting on a tripod holding the nozzle
of a hose, for example, a natural choice for the control volume is one that
passes perpendicularly through the nozzle exit flow and through the bottom
of the tripod legs (Fig. 6—4a). This is a fixed control volume, and the water
velocity relative to a fixed point on the ground is the same as the water
velocity relative to the nozzle exit plane.

When analyzing flow systems that are moving or deforming, it is usu-
ally more convenient to allow the control volume to move or deform. When
determining the thrust developed by the jet engine of an airplane cruising at
constant velocity, for example, a wise choice of control volume is one that
encloses the airplane and cuts through the nozzle exit plane (Fig. 6-4b). The
control volume in this case moves with velocity Vi, which is identical to
the cruising velocity of the airplane relative to a fixed point on earth. When
determining the flow rate of exhaust gases leaving the nozzle, the proper
velocity to use is the velocity of the exhaust gases relative to the nozzle exit
plane, that is, the relative velocity V Since the entire control volume moves
at velocity ch’ the relative ve10c1ty becomes V =V- VCV, where V is the
absolute velocity of the exhaust gases, i.e., the velocity relative to a fixed
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FIGURE 6-3

The rate of change of the angular
momentum of a body is equal to
the net torque acting on it.
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Fixed control volume

Deforming
control volume

FIGURE 64
Examples of (a) fixed, (b) moving, and
(c) deforming control volumes.

point on earth. Note that Vr is the fluid velocity expressed relative to a coor-
dinate system moving with the control volume. Also, this is a vector equa-
tion, and velocities in opposite directions have opposite signs. For example,
if the airplane is cruising at 500 km/h to the left, and the velocity of the
exhaust gases is 800 km/h to the right relative to the ground, the velocity of
the exhaust gases relative to the nozzle exit is

V.=V — V., = 800i — (—5007) = 13007 km/h

That is, the exhaust gases leave the nozzle at 1300 km/h to the right rela-
tive to the nozzle exit (in the direction opposite to that of the airplane); this
is the velocity that should be used when evaluating the outflow of exhaust
gases through the control surface (Fig. 6-4b). Note that the exhaust gases
would appear motionless to an observer on the ground if the relative veloc-
ity were equal in magnitude to the airplane velocity.

When analyzing the purging of exhaust gases from a reciprocating inter-
nal combustion engine, a wise choice for the control volume is one that
comprises the space between the top of the piston and the cylinder head
(Fig. 6-4c). This is a deforming control volume, since part of the control
surface moves relative to other parts. The relative velocity for an inlet or
outlet on the deforming part of a control surface (there are no such inlets
or outlets in Fig. 64c) is then given by V V- VCS where V is the absolute
fluid velocity and VCS is the control surface velocity, both relative to a fixed
point outside the control volume. Note that Vg = V(y for moving but
nondeforming control volumes, and VCS VCV = 0 for fixed ones.

6-3 = FORCES ACTING ON A CONTROL VOLUME

The forces acting on a control volume consist of body forces that act
throughout the entire body of the control volume (such as gravity, electric,
and magnetic forces) and surface forces that act on the control surface (such
as pressure and viscous forces and reaction forces at points of contact). Only
external forces are considered in the analysis. Internal forces (such as the
pressure force between a fluid and the inner surfaces of the flow section)
are not considered in a control volume analysis unless they are exposed by
passing the control surface through that area.

In control volume analysis, the sum of all forces acting on the control vol-
ume at a particular instant in time is represented by XF and is expressed as

Total force acting on control volume: 21? = EI? body T 217“ urface (6-4)

Body forces act on each volumetric portion of the control volume. The body
force acting on a differential element of fluid of volume dV within the con-
trol volume is shown in Fig. 6-5, and we must perform a volume integral to
account for the net body force on the entire control volume. Surface forces
act on each portion of the control surface. A differential surface element
of area dA and unit outward normal 7 on the control surface is shown in
Fig. 6-5, along with the surface force acting on it. We must perform an area
integral to obtain the net surface force acting on the entire control surface.
As sketched, the surface force may act in a direction independent of that of
the outward normal vector.



The most common body force is that of gravity, which exerts a down-
ward force on every differential element of the control volume. While other
body forces, such as electric and magnetic forces, may be important in some
analyses, we consider only gravitational forces here.

The differential body force deody dF, acting on the small fluid ele-

K gravity
ment shown in Fig. 6-6 is simply its weight,

Gravitational force acting on a fluid element: dF. pg dV (6-5)

gravity

where p is the average density of the element and g is the gravitational
vector. In Cartesian coordinates we adopt the convention that g acts in the
negative z-direction, as in Fig. 6-6, so that

N -
Gravitational vector in Cartesian coordinates: g = —gk (6-6)

Note that the coordinate axes in Fig. 66 are oriented so that the gravity
vector acts downward in the —z-direction. On earth at sea level, the gravita-
tional constant g is equal to 9.807 m/s2. Since gravity is the only body force
being considered, integration of Eq. 6-5 yields

Total body force acting on control volume: 217 body = J pgdV = meyg  (6-7)
cv

Surface forces are not as simple to analyze since they consist of both
normal and tangential components. Furthermore, while the physical force
acting on a surface is independent of orientation of the coordinate axes, the
description of the force in terms of its coordinate components changes with
orientation (Fig. 6-7). In addition, we are rarely fortunate enough to have
each of the control surfaces aligned with one of the coordinate axes. While
not desiring to delve too deeply into tensor algebra, we are forced to define
a second-order tensor called the stress tensor o; in order to adequately
describe the surface stresses at a point in the flow,

O o-xy sz
Stress tensor in Cartesian coordinates: o; =10, 0O, O, (6-8)
Oun Oy O

The diagonal components of the stress tensor, o,,, o s and o_, are called
normal stresses; they are composed of pressure (which always acts inwardly
normal) and viscous stresses. Viscous stresses are discussed in more detail
in Chap. 9. The off-diagonal components, o,,, o_,, etc., are called shear
stresses; since pressure can act only normal to a surface, shear stresses are
composed entirely of viscous stresses.

When the face is not parallel to one of the coordinate axes, mathematical
laws for axes rotation and tensors can be used to calculate the normal and
tangential components acting at the face. In addition, an alternate notation
called tensor notation is convenient when working with tensors but is usu-
ally reserved for graduate studies. (For a more in-depth analysis of tensors
and tensor notation see, for example, Kundu and Cohen, 2011.)

In Eq. 6-8, 0; is defined as the stress (force per unit area) in the j-direction
acting on a face whose normal is in the i-direction. Note that / and j are merely
indices of the tensor and are not the same as unit vectors i and j. For
example, o, is defined as positive for the stress pointing in the y-direction
on a face whose outward normal is in the x-direction. This component of the
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The total force acting on a control
volume is composed of body forces
and surface forces; body force is
shown on a differential volume
element, and surface force is shown
on a differential surface element.
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FIGURE 6-6

The gravitational force acting on

a differential volume element of fluid
is equal to its weight; the axes are
oriented so that the gravity vector acts
downward in the negative z-direction.
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FIGURE 6-7

When coordinate axes are rotated (a)
to (b), the components of the surface
force change, even though the force
itself remains the same; only two
dimensions are shown here.

stress tensor, along with the other eight components, is shown in Fig. 6-8 for
the case of a differential fluid element aligned with the axes in Cartesian coor-
dinates. All the components in Fig. 6-8 are shown on positive faces (right,
top, and front) and in their positive orientation by definition. Positive stress
components on the opposing faces of the fluid element (not shown) point in
exactly opposite directions.

The dot product of a second-order tensor and a vector yields a second
vector; this operation is often called the contracted product or the inner
product of a tensor and a vector. In our case, it turns out that the inner
product of the stress tensor o; and the unit outward normal vector n of a
differential surface element yields a vector whose magnitude is the force per
unit area acting on the surface element and whose direction is the direction
of the surface force itself. Mathematically we write

—

Surface force acting on a differential surface element: dF .. = 0'1_';"7 dA  (6-9)
Finally, we integrate Eq. 6-9 over the entire control surface,
Total surface force acting on control surface: El?surface = 01:7»77 dA  (6-10)

CcS

Substitution of Egs. 6-7 and 6-10 into Eq. 64 yields

EF - EﬁbOdY + Eﬁsurﬁwe = J pgdv + J UUﬁ)dA

Ccv CS

(6-11)

This equation turns out to be quite useful in the derivation of the differ-
ential form of conservation of linear momentum, as discussed in Chap. 9.
For practical control volume analysis, however, it is rare that we need to use
Eq. 6-11, especially the cumbersome surface integral that it contains.

A careful selection of the control yolume enables us to write the total
force acting on the control volume, XF, as the sum of more readily available
quantities like weight, pressure, and reaction forces. We recommend the fol-
lowing for control volume analysis:

TOtal.force: EF = EFgravily + EFpressure + EFViscnus + EF()lher

——
total force

(6-12)

body force surface forces

The first term on the right-hand side of Eq. 612 is the body force weight,
since gravity is the only body force we are considering. The other three
terms combine to form the net surface force; they are pressure forces, vis-
cous forces, and “other” forces acting on the control surface. XF ;.. is com-
posed of reaction forces required to turn the flow; forces at bolts, cables,
struts, or walls through which the control surface cuts; etc.

All these surface forces arise as the control volume is isolated from its
surroundings for analysis, and the effect of any detached object is accounted
for by a force at that location. This is similar to drawing a free-body dia-
gram in your statics and dynamics classes. We should choose the control
volume such that forces that are not of interest remain internal, and thus
they do not complicate the analysis. A well-chosen control volume exposes
only the forces that are to be determined (such as reaction forces) and a
minimum number of other forces.



A common simplication in the application of Newton’s laws of motion is
to subtract the atmospheric pressure and work with gage pressures. This is
because atmospheric pressure acts in all directions, and its effect cancels out
in every direction (Fig. 6-9). This means we can also ignore the pressure
forces at outlet sections where the fluid is discharged at subsonic velocities
to the atmosphere since the discharge pressures in such cases are very near
atmospheric pressure.

As an example of how to wisely choose a control volume, consider con-
trol volume analysis of water flowing steadily through a faucet with a par-
tially closed gate valve spigot (Fig. 6-10). It is desired to calculate the net
force on the flange to ensure that the flange bolts are strong enough. There
are many possible choices for the control volume. Some engineers restrict
their control volumes to the fluid itself, as indicated by CV A (the purple
control volume) in Fig 6-10. With this control volume, there are pressure
forces that vary along the control surface, there are viscous forces along
the pipe wall and at locations inside the valve, and there is a body force,
namely, the weight of the water in the control volume. Fortunately, to cal-
culate the net force on the flange, we do not need to integrate the pressure
and viscous stresses all along the control surface. Instead, we can lump the
unknown pressure and viscous forces together into one reaction force, repre-
senting the net force of the walls on the water. This force, plus the weight of
the faucet and the water, is equal to the net force on the flange. (We must be
very careful with our signs, of course.)

When choosing a control volume, you are not limited to the fluid alone.
Often it is more convenient to slice the control surface through solid objects
such as walls, struts, or bolts as illustrated by CV B (the red control vol-
ume) in Fig. 6-10. A control volume may even surround an entire object,
like the one shown here. Control volume B is a wise choice because we are
not concerned with any details of the flow or even the geometry inside the
control volume. For the case of CV B, we assign a net reaction force act-
ing at the portions of the control surface that slice through the flange bolts.
Then, the only other things we need to know are the gage pressure of
the water at the flange (the inlet to the control volume) and the weights of
the water and the faucet assembly. The pressure everywhere else along the
control surface is atmospheric (zero gage pressure) and cancels out. This
problem is revisited in Section 64, Example 6-7.

6—4 = THE LINEAR MOMENTUM EQUATION

Newton’s second law for a system of mass m subjected to net force ZF is
expressed as

SF =md = (6-13)
where mV is the linear momentum of the system. Noting that both the
density and velocity may change from point to point within the system,
Newton’s second law can be expressed more generally as

-]

sys

pV dV (6-14)
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Atmospheric pressure acts in all
directions, and thus it can be ignored
when performing force balances since
its effect cancels out in every direction.
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FIGURE 6-10

Cross section through a faucet
assembly, illustrating the importance
of choosing a control volume wisely;

CV B is much easier to work with
than CV A.
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The linear momentum equation
is obtained by replacing B in the
Reynolds transport theorem by
the momentum mv, and b by ~
the momentum per unit mass V.
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FIGURE 6-12

In most flow systems, the sum of
forces F consists of weights,
pressure forces, and reaction forces.
Gage pressures are used here since
atmospheric pressure cancels out on
all sides of the control surface.

where pV dV is the momentum of a differential element dV, which has mass
om = pdV. Therefore, Newton’s second law can be stated as the sum of
all external forces acting on a system is equal to the time rate of change
of linear momentum of the system. This statement is valid for a coordinate
system that is at rest or moves with a constant velocity, called an inertial
coordinate system or inertial reference frame. Accelerating systems such as
aircraft during takeoff are best analyzed using noninertial (or accelerating)
coordinate systems fixed to the aircraft. Note that Eq. 6-14 is a vector rela-
tion, and thus the quantities F and V have direction as well as magnitude.

Equation 6-14 is for a given mass of a solid or fluid and is of limited use
in fluid mechanics since most flow systems are analyzed using control vol-
umes. The Reynolds transport theorem developed in Section 4-6 provides
the necessary tools to shift from the system formulation to the control vol-
ume formulation. Setting b = V and thus B = mV, the Reynolds transport
theorem is expressed for linear momentum as (Fig. 6-11)

dmVy,, 4 -
7y=—j dev+J
CV

V (Vi) dA
ar " Csp (V,-n)

(6-15)
The left-hand side of this equation is, from Eq. 6-13, equal to >F. Substi-
tuting, the general form of the linear momentum equation that applies to
fixed, moving, or deforming control volumes is

d — = =
*f pV dV + j pV(V,.n)dA
dr Jey cs

General: E F = (6-16)

which is stated in words as

The sum of all
external forces | =

The time rate of change The net flow rate of

of the linear momentum | + | linear momentum out of the

acting on a CV of the contents of the CV control surface by mass flow
— — —

Here V. = V — Vg is the fluid velocity relative to the control surface (for
use in mass flow rate calculations at all locations where the fluid crosses the
control surface), and Vis the fluid velocity as viewed from an inertial refer-
ence frame. The product p(V 1) dA represents the mass flow rate through
area element dA into or out of the control volume.

For a fixed control volume (no motion or deformation of the control volume),

V = V and the linear momentum equation becomes

-2

CV

Fixed CV: pV dV + J pV(V-it) dA (6-17)

CS

Note that the momentum equation is a vector equation, and thus each term
should be treated as a vector. Also, the components of this equation can be
resolved along orthogonal coordinates (such as x, y, and z in the Cartesian
coordinate system) for convenience. The sum of forces XF in most cases
consists of weights, pressure forces, and reaction forces (Fig. 6-12). The
momentum equation is commonly used to calculate the forces (usually on
support systems or connectors) induced by the flow.



Special Cases

Most momentum problems considered in this text are steady. During steady
flow, the amount of momentum within the control volume remains constant,
and thus the time rate of change of linear momentum of the contents of the
control volume (the second term of Eq. 6-16) is zero. Thus,

Steady flow: SF = J pV (V1) dA (6-18)
CS

For a case in which a non-deforming control volume moves at constant
velocity (an inertial reference frame), the first Vin Eq. 6-18 may also be
taken relative to the moving control surface.

While Eq. 6-17 is exact for fixed control volumes, it is not always con-
venient when solving practical engineering problems because of the inte-
grals. Instead, as we did for conservation of mass, we would like to rewrite
Eq. 6-17 in terms of average velocities and mass flow rates through inlets
and outlets. In other words, our desire is to rewrite the equation in algebraic
rather than integral form. In many practical applications, fluid crosses the
boundaries of the control volume at one or more inlets and one or more out-
lets, and carries with it some momentum into or out of the control volume.
For simplicity, we always draw our control surface such that it slices normal
to the inflow or outflow velocity at each such inlet or outlet (Fig. 6-13).

The mass flow rate 71 into or out of the control volume across an inlet or
outlet at which p is nearly constant is

Mass flow rate across an inlet or outlet: ~ m = J p(\7-7t YdA, = pV A, (6-19)
A,

Comparing Eq. 6-19 to Eq. 6-17, we notice an extra velocity in the control
surface integral of Eq. 6-17. If V were uniform (V avg) across the inlet
or outlet, we could simply take it outside the integral. Then we could write
the rate of inflow or outflow of momentum through the inlet or outlet in
simple algebraic form,

Momentum flow rate across a uniform inlet or outlet:

—

J pV(V-ii) dA, = pVoy AV, = mV,, (6-20)
A,

The uniform flow approximation is reasonable at some inlets and outlets,
e.g., the well-rounded entrance to a pipe, the flow at the entrance to a wind
tunnel test section, and a slice through a water jet moving at nearly uniform
speed through air (Fig. 6-14). At each such inlet or outlet, Eq. 6-20 can be
applied directly.

Momentum-Flux Correction Factor, 8

Unfortunately, the velocity across most inlets and outlets of practical engi-
neering interest is not uniform. Nevertheless, it turns out that we can still
convert the control surface integral of Eq. 617 into algebraic form, but a
dimensionless correction factor B, called the momentum-flux correction
factor, is required, as first shown by the French scientist Joseph Boussinesq
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In a typical engineering problem,

the control volume may contain
multiple inlets and outlets; at each
inlet or outlet we define the mass flow
rate m and the average velocity Vavg



252
MOMENTUM ANALYSIS OF FLOW SYSTEMS

avg

j—

| V=V,
i~
B

avg

niin

FIGURE 6-14

Examples of inlets or outlets

in which the uniform flow
approximation is reasonable:

(a) the well-rounded entrance to
a pipe, (b) the entrance to a wind
tunnel test section, and (c) a slice
through a free water jet in air.

(1842-1929). The algebraic form of Eq. 6-17 for a fixed control volume is
then written as

SF- gl

pVav + DBV, — 3BV, (6-21)
CV

out in

where a unique value of momentum-flux correction factor is applied to
each inlet and outlet in the control surface. Note that 8 = 1 for the case of
uniform flow over an inlet or outlet, as in Fig. 6-14. For the general case,
we define B such that the integral form of the momentum flux into or out
of the control surface at an inlet or outlet of cross-sectional area A, can be
expressed in terms of mass flow rate m through the inlet or outlet and aver-
age velocity V,,, through the inlet or outlet,

avg
Momentum flux across an inlet or outlet: J p\7(\7-17 )dA, = Br'n\zvg (6-22)
A,

N
For the case in which density is uniform over the inlet or outlet and V' is in
the same direction as V,,, over the inlet or outlet, we solve Eq. 6-22 for S,

J pV(V-1i) dA, J pV(V-1i) dA,
A, A,

= == 6-23
A mV. pV. AV 623

avg avg“tc ' avg

where we have substituted pV,,, A, for min the denominator. The densi-
ties cancel and since V,,, is constant, it can be brought inside the integral.
Furthermore, if the control surface slices normal to the inlet or outlet area,

(V-11) dA, = V dA,. Then, Eq. 6-23 simplifies to

1 V)2
Momentum-flux correction factor: B = /TJ’ <7V ) dA, (6-24)
A«

c avg

It may be shown that 3 is always greater than or equal to unity.

EXAMPLE 6-1 Momentum-Flux Correction Factor
for Laminar Pipe Flow

Consider laminar flow through a very long straight section of round pipe. It ®
is shown in Chap. 8 that the velocity profile through a cross-sectional area of
the pipe is parabolic (Fig. 6-15), with the axial velocity component given by

r2
V= 2Vavg<1 - F) M

where R is the radius of the inner wall of the pipe and V,, is the average
velocity. Calculate the momentum-flux correction factor through a cross sec-
tion of the pipe for the case in which the pipe flow represents an outlet of
the control volume, as sketched in Fig. 6-15.

SOLUTION For a given velocity distribution we are to calculate the momentum-
flux correction factor.



Assumptions 1 The flow is incompressible and steady. 2 The control volume
slices through the pipe normal to the pipe axis, as sketched in Fig. 6-15.
Analysis We substitute the given velocity profile for V in Eq. 6-24 and inte-
grate, noting that dA, = 2ar dr,

1 A% 4 (" A%
/3=J() dAC=—2J (1—2>27Trdr 2)
A ) \V, 7R |, R

Defining a new integration variable y = 1 — r?/R? and thus dy = —2r dr/R?
(also, y=1at r =0, and y = 0 at r = R) and performing the integra-
tion, the momentum-flux correction factor for fully developed laminar flow
becomes

0 y3 0 4
Laminar flow: B = —4J y2dy = —4[*} = — 3)
1 3/, 3
Discussion We have calculated B8 for an outlet, but the same result would
have been obtained if we had considered the cross section of the pipe as an
inlet to the control volume.

From Example 6-1 we see that 3 is not very close to unity for fully devel-
oped laminar pipe flow, and ignoring 8 could potentially lead to significant
error. If we were to perform the same kind of integration as in Example 61
but for fully developed turbulent rather than laminar pipe flow, we would
find that B ranges from about 1.01 to 1.04. Since these values are so close
to unity, many practicing engineers completely disregard the momentum-
flux correction factor. While the neglect of B in turbulent flow calculations
may have an insignificant effect on the final results, it is wise to keep it in
our equations. Doing so not only improves the accuracy of our calculations,
but reminds us to include the momentum-flux correction factor when solv-
ing laminar flow control volume problems.

For turbulent flow B may have an insignificant effect at inlets and outlets, but
for laminar flow 8 may be important and should not be neglected. It is wise
to include B in all momentum control volume problems.

Steady Flow
If the flow is also steady, the time derivative term in Eq. 6-21 vanishes and
we are left with

Steady linear momentum equation: Eﬁ = 2[311'1\7 - Eﬁmv (6-25)

out in

where we have dropped the subscript “avg” from average velocity. Equa-
tion 6-25 states that the net force acting on the control volume during steady
flow is equal to the difference between the rates of outgoing and incoming
momentum flows. This statement is illustrated in Fig. 6-16. It can also be
expressed for any direction, since Eq. 625 is a vector equation.
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FIGURE 6-15

Velocity profile over a cross section
of a pipe in which the flow is fully
developed and laminar.

.2 - \Out i
BariaVs {'/ = B3V
%{ A
_ Fixed \\

/ control

I volume

Y, ’
7 ~

BimW Out/]/\ - \

By OUNp i ZF
Y F=YpmV - > g/
FIGURE 6-16

The net force acting on the control
volume during steady flow is equal to
the difference between the outgoing
and the incoming momentum fluxes.
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A control volume with only one inlet
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The determination by vector addition of
the reaction force on the support caused
by a change of direction of water.

Steady Flow with One Inlet and One Outlet

Many practical engineering problems involve just one inlet and one outlet
(Fig. 6-17). The mass flow rate for such single-stream systems remains
constant, and Eq. 6-25 reduces to

EF = ”'1(32‘72 - 31‘71)

where we have adopted the usual convention that subscript 1 implies the
inlet and subscript 2 the outlet, and V| and V, denote the average velocities
across the inlet and outlet, respectively.

We emphasize again that all the preceding relations are vector equations, and
thus all the additions and subtractions are vector additions and subtractions.
Recall that subtracting a vector is equivalent to adding it after reversing its
direction (Fig. 6-18). When writing the momentum equation for a specified
coordinate direction (such as the x-axis), we use the projections of the vec-
tors on that axis. For example, Eq. 6-26 is written along the x-coordinate as

EF,\- = m(B,V, . — BiVi)

One inlet and one outlet: (6-26)

Along x-coordinate: (6-27)
where XF is the vector sum of the x-components of the forces, and V, |
and V, | are the x-components of the outlet and inlet velocities of the fluid
stream, respectively. The force or velocity components in the positive
x-direction are positive quantities, and those in the negative x-direction are
negative quantities. Also, it is good practice to take the direction of unknown
forces in the positive directions (unless the problem is very straightforward).
A negative value obtained for an unknown force indicates that the assumed
direction is wrong and should be reversed.

Flow with No External Forces

An interesting situation arises when there are no external forces (such as
weight, pressure, and reaction forces) acting on the body in the direction of
motion—a common situation for space vehicles and satellites. For a control
volume with multiple inlets and outlets, Eq. 6-21 reduces in this case to

_dmV)ey S gV — S gV

(6-28)
dt out in

No external forces: 0
This is an expression of the conservation of momentum principle, which
is stated in words as in the absence of external forces, the rate of change
of the momentum of a control volume is equal to the difference between the
rates of incoming and outgoing momentum flow rates.
When the mass m of the control volume remains nearly constant, the first
term of Eq. 6-28 becomes simply mass times acceleration, since
d(mV)ey dv

cv o 5 _ N
d Mey dr (ma)ey = meya
Therefore, the control volume in this case can be treated as a solid body (a
fixed-mass system) with a net thrusting force (or just thrust) of

Thrust: (6-29)

Fthrust = mbodya :Eﬁmv - ZBmV
in out

acting on the body. In Eq 6-29, fluid velocities are relative to an inertial

reference frame—that is, a coordinate system that is fixed in space or is



moving uniformly at constant velocity on a straight path. When analyzing the
motion of bodies moving at constant velocity on a straight path, it is conve-
nient to choose an inertial reference frame that moves with the body at the
same velocity on the same path. In this case the velocities of fluid streams
relative to the inertial reference frame are identical to the velocities relative to
the moving body, which are much easier to apply. This approach, while not
strictly valid for noninertial reference frames, can also be used to calculate the
initial acceleration of a space vehicle when its rocket is fired (Fig. 6-19).
Recall that thrust is a mechanical force typically generated through the
reaction of an accelerating fluid. In the jet engine of an aircraft, for exam-
ple, hot exhaust gases are accelerated by the action of expansion and out-
flow of gases through the back of the engine, and a thrusting force is pro-
duced by a reaction in the opposite direction. The generation of thrust is
based on Newton’s third law of motion, which states that for every action
at a point there is an equal and opposite reaction. In the case of a jet
engine, if the engine exerts a force on exhaust gases, then the exhaust gases
exert an equal force on the engine in the opposite direction. That is, the
pushing force exerted on the departing gases by the engine is equal to the
thrusting force the departing gases exert on the remaining mass of the air-
craft in the opposite direction Fy, = —Fq. On the free-body diagram
of an aircraft, the effect of outgoing exhaust gases is accounted for by the
insertion of a force in the opposite direction of motion of the exhaust gases.

[ |
- EXAMPLE 6-2 The Force to Hold a Deflector Elbow in Place

B A reducing elbow is used to deflect water flow at a rate of 14 kg/s in a

B horizontal pipe upward 30° while accelerating it (Fig. 6-20). The elbow dis-

B charges water into the atmosphere. The cross-sectional area of the elbow
is 113 cm? at the inlet and 7 cm? at the outlet. The elevation difference
between the centers of the outlet and the inlet is 30 cm. The weight of the
elbow and the water in it is considered to be negligible. Determine (a) the
gage pressure at the center of the inlet of the elbow and (b) the anchoring
force needed to hold the elbow in place.

SOLUTION A reducing elbow deflects water upward and discharges it to the
atmosphere. The pressure at the inlet of the elbow and the force needed to
hold the elbow in place are to be determined.

Assumptions 1 The flow is steady, and the frictional effects are negligible.
2 The weight of the elbow and the water in it is negligible. 3 The water is
discharged to the atmosphere, and thus the gage pressure at the outlet is
zero. 4 The flow is turbulent and fully developed at both the inlet and outlet
of the control volume, and we take the momentum-flux correction factor to
be B = 1.03 (as a conservative estimate) at both the inlet and the outlet.
Properties We take the density of water to be 1000 kg/m3.

Analysis (a) We take the elbow as the control volume and designate the
inlet by 1 and the outlet by 2. We also take the x- and zcoordinates as
shown. The continuity equation for this one-inlet, one-outlet, steady-flow sys-
tem is m; = m, = m = 14 kg/s. Noting that m = pAV, the inlet and outlet
velocities of water are

) 14 kg/s
Vi=—= 5 oo = 1.24 m/s
pA, (1000 kg/m*)(0.0113 m?*)
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Vo =2000 m/s

FIGURE 6-19

The thrust needed to lift the space
shuttle is generated by the rocket
engines as a result of momentum
change of the fuel as it is accelerated
from about zero to an exit speed of
about 2000 m/s after combustion.
NASA

FIGURE 6-20
Schematic for Example 6-2.
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mo 14 kg/s
27 pA, (1000 kg/m3)(7 X 10™* m?)

= 20.0 m/s

We use the Bernoulli equation (Chap. 5) as a first approximation to calculate
the pressure. In Chap. 8 we will learn how to account for frictional losses
along the walls. Taking the center of the inlet cross section as the reference
level (z; = 0) and noting that P, = P, the Bernoulli equation for a stream-
line going through the center of the elbow is expressed as

P, Vi P, V3
= qp =— Z1=—+t —+z
pg 2 pg 2
Vi-v3
P, — P, = pg 3 +2, =z
8

P, — P, = (1000 kg/m*)(9.81 m/s?)

(20 m/s)> — (1.24 m/s)? 1 kN
X - +03-0)(———
2(9.81 m/s?) 1000 kg-m/s

Py gage = 202.2 kN/m? = 202.2 kPa (gage)
(b) The momentum equation for steady flow is

SF=>pnV — 3 pmV

out in

We let the x- and z-components of the anchoring force of the elbow be Fp,
and Fg,, and assume them to be in the positive direction. We also use gage
pressure since the atmospheric pressure acts on the entire control surface.
Then the momentum equations along the x- and zaxes become

Fo.o Pl’gageA1 = BmV,cos 0 — BmV,

Fy. = BmV,sin 6
where we have set B = B; = B,. Solving for F, and Fg,, and substituting the
given values,

Fp, = Br'n(Vz cos O — Vl) - Pl,gageA1

1.03(14 kg/s)[ (20 cos 30° — 1.24) m/s]( ———
(14 kg/s)[(20 cos ) S](lkg-m/52>

— (202,200 N/m?)(0.0113 m?)
232 — 2285 = —2053N

Fp. = BrnV, sin 0 = (1.03)(14 kg/s)(20 sin 30° m/s)< ) = 144N

1 kg-m/s?

The negative result for Fg, indicates that the assumed direction is wrong,
and it should be reversed. Therefore, Fg, acts in the negative x-direction.
Discussion There is a nonzero pressure distribution along the inside walls of
the elbow, but since the control volume is outside the elbow, these pressures
do not appear in our analysis. The weight of the elbow and the water in it
could be added to the vertical force for better accuracy. The actual value
of Py gage Will be higher than that calculated here because of frictional and
other irreversible losses in the elbow.



EXAMPLE 6-3 The Force to Hold a Reversing Elbow in Place

The deflector elbow in Example 6-2 is replaced by a reversing elbow such
that the fluid makes a 180° U-turn before it is discharged, as shown in
Fig. 6-21. The elevation difference between the centers of the inlet and the
exit sections is still 0.3 m. Determine the anchoring force needed to hold
the elbow in place.

SOLUTION The inlet and the outlet velocities and the pressure at the inlet
of the elbow remain the same, but the vertical component of the anchoring
force at the connection of the elbow to the pipe is zero in this case (Fg, = 0)
since there is no other force or momentum flux in the vertical direction (we
are neglecting the weight of the elbow and the water). The horizontal com-
ponent of the anchoring force is determined from the momentum equation
written in the x-direction. Noting that the outlet velocity is negative since it
is in the negative x-direction, we have

Fre T Py oAy = Byi(=Vy) — BV = —Bm(V, + V)
Solving for Fg, and substituting the known values,

FRx = _Bm(VZ + Vl) - Pl,gageAl

= —(1.03)(14 kg/s)[ (20 + 1.24) m/s]<1kg.m/sz

= —306 — 2285 = —2591 N

Therefore, the horizontal force on the flange is 2591 N acting in the nega-
tive x-direction (the elbow is trying to separate from the pipe). This force
is equivalent to the weight of about 260 kg mass, and thus the connectors
(such as bolts) used must be strong enough to withstand this force.
Discussion The reaction force in the x-direction is larger than that of Exam-
ple 6-2 since the walls turn the water over a much greater angle. If the
reversing elbow is replaced by a straight nozzle (like one used by firefight-
ers) such that water is discharged in the positive x-direction, the momentum
equation in the x-direction becomes

Fro + Py oAy = iV, = BV, —  Fpo = Bin(Vy, = V) = Py g, A

since both V; and V, are in the positive x-direction. This shows the impor-
tance of using the correct sign (positive if in the positive direction and nega-
tive if in the opposite direction) for velocities and forces.

EXAMPLE 6-4 Water Jet Striking a Stationary Plate

Water is accelerated by a nozzle to an average speed of 20 m/s, and strikes a
stationary vertical plate at a rate of 10 kg/s with a normal velocity of 20 m/s
(Fig. 6-22). After the strike, the water stream splatters off in all directions
in the plane of the plate. Determine the force needed to prevent the plate
from moving horizontally due to the water stream.

SOLUTION A water jet strikes a vertical stationary plate normally. The force
needed to hold the plate in place is to be determined.

Assumptions 1 The flow of water at the nozzle outlet is steady. 2 The water
splatters in directions normal to the approach direction of the water jet.

> — (202,200 N/m?)(0.0113 m?)
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FIGURE 6-21
Schematic for Example 6-3.

FIGURE 6-22
Schematic for Example 6—4.
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FIGURE 6-23

The downwash of a helicopter

is similar to the jet discussed in
Example 6-4. The jet impinges on
the surface of the water in this case,
causing circular waves as seen here.
© Purestock/SuperStock RF
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Schematic for Example 6-5.

3 The water jet is exposed to the atmosphere, and thus the pressure of the
water jet and the splattered water leaving the control volume is atmospheric
pressure, which is disregarded since it acts on the entire system. 4 The ver-
tical forces and momentum fluxes are not considered since they have no
effect on the horizontal reaction force. 5 The effect of the momentum-flux
correction factor is negligible, and thus g = 1 at the inlet.

Analysis We draw the control volume for this problem such that it contains
the entire plate and cuts through the water jet and the support bar normally.
The momentum equation for steady flow is given as

SF = 2pnv — > gV )
out in
Writing Eq. 1 for this problem along the x-direction (without forgetting the
negative sign for forces and velocities in the negative x-direction) and noting
that v, , = Vy and V, , = O gives

—F, =0 — BV,

Substituting the given values,

F, = BmV, = (1)(10 kg/s)(20 ms)<“(;1:]/82> = 200 N

Therefore, the support must apply a 200-N horizontal force (equivalent to
the weight of about a 20-kg mass) in the negative x-direction (the opposite
direction of the water jet) to hold the plate in place. A similar situation
occurs in the downwash of a helicopter (Fig. 6-23).
Discussion The plate absorbs the full brunt of the momentum of the water
jet since the x-direction momentum at the outlet of the control volume is
zero. If the control volume were drawn instead along the interface between
the water and the plate, there would be additional (unknown) pressure forces
in the analysis. By cutting the control volume through the support, we avoid
having to deal with this additional complexity. This is an example of a “wise”
choice of control volume.

EXAMPLE 6-5 Power Generation and Wind Loading
of a Wind Turbine

A wind generator with a 30-ft-diameter blade span has a cut-in wind speed
(minimum speed for power generation) of 7 mph, at which velocity the tur-
bine generates 0.4 kW of electric power (Fig. 6-24). Determine (a) the effi-
ciency of the wind turbine—generator unit and (b) the horizontal force exerted
by the wind on the supporting mast of the wind turbine. What is the effect
of doubling the wind velocity to 14 mph on power generation and the force
exerted? Assume the efficiency remains the same, and take the density of air
to be 0.076 lbm/ft3.

SOLUTION The power generation and loading of a wind turbine are to be
analyzed. The efficiency and the force exerted on the mast are to be deter-
mined, and the effects of doubling the wind velocity are to be investigated.

Assumptions 1 The wind flow is steady and incompressible. 2 The efficiency
of the turbine—-generator is independent of wind speed. 3 The frictional effects
are negligible, and thus none of the incoming kinetic energy is converted to



thermal energy. 4 The average velocity of air through the wind turbine is the
same as the wind velocity (actually, it is considerably less—see Chap. 14).
5 The wind flow is nearly uniform upstream and downstream of the wind
turbine and thus the momentum-flux correction factor is B = B, = B, = 1.
Properties The density of air is given to be 0.076 lbm/ft3.

Analysis Kinetic energy is a mechanical form of energy, and thus it can
be converted to work entirely. Therefore, the power potential of the wind is
proportional to its kinetic energy, which is V2/2 per unit mass, and thus
the maximum power is mV?/2 for a given mass flow rate:

1.4667 ft/s

) = 10.27 ft/s
1 mph

V=@ mph)(

D? (30 ft)?

m=pV,A =pV, WT = (0.076 Ibm/ft3)(10.27 fi/s) = 551.7 Ibm/s

vi
= rike, = ni
ke, = m =

(1027 ft/s)2< 1 1bf >< 1 kW >
171
(331.7 Ibm/s) —— 322 Ibm-ft/s2 )\ 73756 Ibf-fi/s

= 1.225kW

Therefore, the available power to the wind turbine is 1.225 kW at the wind
velocity of 7 mph. Then the turbine—generator efficiency becomes

Wi _ 04kW
Y = 0.327 32.7%
Muindwrbine = 7 1225 kW (or32:7%)

max

(b) The frictional effects are assumed to be negligible, and thus the portion
of incoming kinetic energy not converted to electric power leaves the wind
turbine as outgoing kinetic energy. Noting that the mass flow rate remains
constant, the exit velocity is determined to be
Vi vi
thCZ = mkel(l - nwindturbine) - m 7 = m7(1 - nwindturbine) (1)

or
V, = ViV — mynduime = (10.27 ft/s)\V/1 — 0327 = 8.43 ft/s

To determine the force on the mast (Fig. 6-25), we draw a control volume
around the wind turbine such that the wind is normal to the control surface
at the inlet and the outlet and the entire control surface is at atmospheric
pressure (Fig. 6-23). The momentum equation for steady flow is given as

SF = 3pnv - > vV @

out in

Writing Eqg. 2 along the x-direction and noting that 8 = 1, V; , = V;, and
Vo « = V5 give

Fp = mV, — mV, = m(V, — V) ©)

Substituting the known values into Eq. 3 gives

Fr

1 Ibf
i(Vy = V) = (551.7 Iom/s)(8.43 — 10.27 fus) (m)
2 Ibm-ft/s

—31.5 Ibf
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FIGURE 6-25

Forces and moments on the supporting
mast of a modern wind turbine

can be substantial, and increase

like V%; thus the mast is typically
quite large and strong.
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FIGURE 6-26
Schematic for Example 6-6.
© Brand X Pictures/PunchStock

The negative sign indicates that the reaction force acts in the negative
x-direction, as expected. Then the force exerted by the wind on the mast
becomes F .« = —Fr = 31.5 Ibf.

The power generated is proportional to V3 since the mass flow rate is
proportional to V and the kinetic energy to V2. Therefore, doubling the wind
velocity to 14 mph will increase the power generation by a factor of 23 = 8
to 0.4 X 8 = 3.2 kW. The force exerted by the wind on the support mast
is proportional to V2. Therefore, doubling the wind velocity to 14 mph will
increase the wind force by a factor of 22 = 4 to 31.5 X 4 = 126 Ibf.
Discussion Wind turbines are treated in more detail in Chap. 14.

EXAMPLE 6-6 Deceleration of a Spacecraft

A spacecraft with a mass of 12,000 kg is dropping vertically towards a
planet at a constant speed of 800 m/s (Fig. 6-26). To slow down the
spacecraft, a solid-fuel rocket at the bottom is fired, and combustion
gases leave the rocket at a constant rate of 80 kg/s and at a velocity
of 3000 m/s relative to the spacecraft in the direction of motion of the
spacecraft for a period of 5 s. Disregarding the small change in the mass
of the spacecraft, determine (a) the deceleration of the spacecraft during
this period, (b) the change of velocity of the spacecraft, and (c) the thrust
exerted on the spacecraft.

SOLUTION The rocket of a spacecraft is fired in the direction of motion.
The deceleration, the velocity change, and the thrust are to be determined.
Assumptions 1 The flow of combustion gases is steady and one-dimensional
during the firing period, but the flight of the spacecraft is unsteady. 2 There
are no external forces acting on the spacecraft, and the effect of pressure
force at the nozzle outlet is negligible. 3 The mass of discharged fuel is
negligible relative to the mass of the spacecraft, and thus, the spacecraft
may be treated as a solid body with a constant mass. 4 The nozzle is well
designed such that the effect of the momentum-flux correction factor is neg-
ligible, and thus, B = 1.

Analysis (a) For convenience, we choose an inertial reference frame that
moves with the spacecraft at the same initial velocity. Then the velocities
of the fluid stream relative to an inertial reference frame become simply the
velocities relative to the spacecraft. We take the direction of motion of the
spacecraft as the positive direction along the x-axis. There are no external
forces acting on the spacecraft, and its mass is essentially constant. There-
fore, the spacecraft can be treated as a solid body with constant mass, and
the momentum equation in this case is, from Eq. 6-29,

—

— . = . —
Fthrust = M gpacecraft Fspacecraft Eﬁmv - Eﬂmv

in out

where the fluid stream velocities relative to the inertial reference frame in
this case are identical to the velocities relative to the spacecraft. Noting
that the motion is on a straight line and the discharged gases move in the
positive x-direction, we write the momentum equation using magnitudes as

dv

mspacecraftaspacecraft = mspacecraft dt

spacecraft .
= T Mgas Vgas



Noting that gases leave in the positive x-direction and substituting, the
acceleration of the spacecraft during the first 5 seconds is determined to be

dvspacccraft m gas 80 kg/ S >
Apacecraft dt = _m Vgas = _m(+3000 m/s) = —20 m/s

spacecraft

The negative value confirms that the spacecraft is decelerating in the posi-
tive x direction at a rate of 20 m/s?.

(b) Knowing the deceleration, which is constant, the velocity change of the
spacecraft during the first 5 seconds is determined from the definition of
acceleration to be

dav. a dt — AV

spacecraft — “spacecraft spacecraft

—100 m/s

aspacecraftAt = (_20 III/S2)(5 S)

(c) The thrusting force exerted on the space aircraft is, from Eq. 6-29,

kN
1000 kg-m/s?

The negative sign indicates that the trusting force due to firing of the rocket
acts on the aircraft in the negative x-direction.

Discussion Note that if this fired rocket were attached somewhere on a test
stand, it would exert a force of 240 kN (equivalent to the weight of about 24 tons
of mass) to its support in the opposite direction of the discharged gases.

Fig = 0 = 1 Vi = 0 — (80 ke/s)(+3000 m/s)< ) = —240 kN

EXAMPLE 6-7 Net Force on a Flange

Water flows at a rate of 18.5 gal/min through a flanged faucet with a par-
tially closed gate valve spigot (Fig. 6-27). The inner diameter of the pipe
at the location of the flange is 0.780 in (= 0.0650 ft), and the pressure
at that location is measured to be 13.0 psig. The total weight of the faucet
assembly plus the water within it is 12.8 Ibf. Calculate the net force on the
flange.

SOLUTION Water flow through a flanged faucet is considered. The net force
acting on the flange is to be calculated.

Assumptions 1 The flow is steady and incompressible. 2 The flow at the
inlet and at the outlet is turbulent and fully developed so that the momentum-
flux correction factor is about 1.03. 3 The pipe diameter at the outlet of the
faucet is the same as that at the flange.

Properties The density of water at room temperature is 62.3 lbm/ft3,
Analysis We choose the faucet and its immediate surroundings as the control
volume, as shown in Fig. 6-27 along with all the forces acting on it. These
forces include the weight of the water and the weight of the faucet assembly,
the gage pressure force at the inlet to the control vg!ume, and the net force
of the flange on the control volume, which we call F;. We use gage pressure
for convenience since the gage pressure on the rest of the control surface
is zero (atmospheric pressure). Note that the pressure through the outlet of
the control volume is also atmospheric since we are assuming incompressible
flow; hence, the gage pressure is also zero through the outlet.
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Out

FIGURE 6-27

Control volume for Example 67
with all forces shown; gage pressure
is used for convenience.
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We now apply the control volume conservation laws. Conservation of mass
is trivial here since there is only one inlet and one outlet; namely, the mass
flow rate into the control volume is equal to the mass flow rate out of the
control volume. Also, the outflow and inflow average velocities are identical
since the inner diameter is constant and the water is incompressible, and
are determined to be
V Vv _ 185gal/min (o.1337 ft3)<1 min

V.=V =V=—= =
I A, wDY4  w(0.065 ft)X/4 60's

=12.42 ft/
1 gal > °

Also,

0.1337 ft3><1 min

> = 2.568 lbm/s
1 gal 60 s

= pV = (62.3 Ibm/ft)(18.5 gal/min)(

Next we apply the momentum equation for steady flow,

SF = 2pnv — > gV )
out n
We let the x- and z-components of the force acting on the flange be F, and
Fr, and assume them to be in the positive directions. The magnitude of
the velocity in the x-direction is +V; at the inlet, but zero at the outlet. The
magnitude of the velocity in the zdirection is zero at the inlet, but —V, at
the outlet. Also, the weight of the faucet assembly and the water within it
acts in the —zdirection as a body force. No pressure or viscous forces act on
the chosen (wise) control volume in the zdirection.
The components of Eq. 1 along the x- and zdirections become

Foo + P Ay = 0 — i(+V)

1, gage 1
FRZ - Wfaucel - W = m(_VZ) -0

water

Solving for Fg, and Fg,, and substituting the given values,

FRX = _mvl - Pl,gageAl

= —(2.568 Ibm/s)(12.42 ft/s)($> - (13 lbf/inz)woin)2
32.2 Ibm-ft/s?
= —7.20 Ibf
Fp, = —mVy + Wancer+ water
= —(2.568 Ibm/s)(12.42 ft/s)($> + 12.8 Ibf = 11.8 Ibf
32.2 Ibm-ft/s?

Then the net force of the flange on the control volume is expressed in vector
form as

Fp=Fpi + Fok = —=7.200 + 11.8k Ibf
From Newton’s thigl law, the force the faucet assembly exerts on the flange
is the negative of Fg,
= —F, = 7.20i — 11.8k Ibf

N
Ffaucet on flange

Discussion The faucet assembly pulls to the right and down; this agrees
with our intuition. Namely, the water exerts a high pressure at the inlet, but



the outlet pressure is atmospheric. In addition, the momentum of the water
at the inlet in the x-direction is lost in the turn, causing an additional force
to the right on the pipe walls. The faucet assembly weighs much more than
the momentum effect of the water, so we expect the force to be downward.
Note that labeling forces such as “faucet on flange” clarifies the direction
of the force.

6-5 = REVIEW OF ROTATIONAL MOTION
AND ANGULAR MOMENTUM

The motion of a rigid body can be considered to be the combination
of translational motion of its center of mass and rotational motion about
its center of mass. The translational motion is analyzed using the linear
momentum equation, Eq. 6—1. Now we discuss the rotational motion—a
motion during which all points in the body move in circles about the axis
of rotation. Rotational motion is described with angular quantities such as
angular distance 6, angular velocity , and angular acceleration .

The amount of rotation of a point in a body is expressed in terms of the
angle 6 swept by a line of length r that connects the point to the axis of
rotation and is perpendicular to the axis. The angle 6 is expressed in radians
(rad), which is the arc length corresponding to 6 on a circle of unit radius.
Noting that the circumference of a circle of radius r is 27r, the angular
distance traveled by any point in a rigid body during a complete rotation
is 27 rad. The physical distance traveled by a point along its circular path
is [ = 6r, where r is the normal distance of the point from the axis of rota-
tion and 6 is the angular distance in rad. Note that 1 rad corresponds to
360/(27) = 57.3°.

The magnitude of angular velocity w is the angular distance traveled per
unit time, and the magnitude of angular acceleration « is the rate of change
of angular velocity. They are expressed as (Fig. 6-28),

_de_dny  1dl Vv _do _d% 14V _q,

=—= =— d =—=—= =—  (6-30
YT dt rder an T >  r dt r ( )

or
V=ro and a, =ra (6-31)

where V is the linear velocity and q, is the linear acceleration in the tangen-
tial direction for a point located at a distance r from the axis of rotation.
Note that w and « are the same for all points of a rotating rigid body, but V
and a, are not (they are proportional to r).

Newton’s second law requires that there must be a force acting in the
tangential direction to cause angular acceleration. The strength of the rotat-
ing effect, called the moment or torque, is proportional to the magnitude of
the force and its distance from the axis of rotation. The perpendicular dis-
tance from the axis of rotation to the line of action of the force is called the
moment arm, and the magnitude of torque M acting on a point mass m at
normal distance r from the axis of rotation is expressed as

M = rF, = rma, = mr’a (6-32)
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FIGURE 6-28

The relations between angular
distance 60, angular velocity w,
and linear velocity Vin a plane.
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FIGURE 6-29

Analogy between corresponding
linear and angular quantities.
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FIGURE 6-30

Angular momentum of point mass
m rotating at angular velocity w at
distance r from the axis of rotation.

The total torque acting on a rotating rigid body about an axis is determined
by integrating the torque acting on differential mass ém over the entire body
to give

Magnitude of torque: M = J r’a dm = U r? 5m}a = la (6-33)

where [ is the moment of inertia of the body about the axis of rotation, which
is a measure of the inertia of a body against rotation. The relation M = I« is
the counterpart of Newton’s second law, with torque replacing force, moment
of inertia replacing mass, and angular acceleration replacing linear accelera-
tion (Fig. 6-29). Note that unlike mass, the rotational inertia of a body also
depends on the distribution of the mass of the body with respect to the axis
of rotation. Therefore, a body whose mass is closely packed about its axis
of rotation has a small resistance against angular acceleration, while a body
whose mass is concentrated at its periphery has a large resistance against
angular acceleration. A flywheel is a good example of the latter. |

The linear momentum of a body of mass m having velocity Vis mV and
the direction of linear momentum is identical to the direction of velocity.
Noting that the moment of a force is equal to the product of the force and
the normal distance, the magnitude of the moment of momentum, called
the angular momentum, of a point mass m about an axis is expressed as
H = rmV = rmw, where r is the normal distance from the axis of rotation to
the line of action of the momentum vector (Fig. 6-30). Then the total angular
momentum of a rotating rigid body is determined by integration to be

Magnitude of angular momentum: H = J r’w ém = [J r? Sm}w = lo (6-34)
mass mass

where again [ is the moment of inertia of the body about the axis of rota-
tion. It can also be expressed more generally in vector form as

H=1s (6-35)

Note that the angular ve1001ty o is the same at every point of a rigid body.

Newton’s second law F = md was expressed in terms of the rate of change
of linear momentum in Eq. 6-1 as F= d(mV)/dt Likewise, the counterpart of
Newton’s second law for rotating bodies M = Id is expressed in Eq. 6-2 in
terms of the rate of change of angular momentum as

do _ du@) _ dH
dt dt dt

Angular momentum equation: M=1d=1 (6-36)
where M is the net torque applied on the body about the axis of rotation.

The angular velocity of rotating machinery is typically expressed in rpm
(number of revolutions per minute) and denoted by 7. Noting that veloc-
ity is distance traveled per unit time and the angular distance traveled
during each revolution is 27, the angular velocity of rotating machinery is
® = 27rn rad/min or

i
Angular velocity versus rpm: w = 27n (rad/min) = % (rad/s) (6-37)

Consider a constant force F acting in the tangential direction on the outer
surface of a shaft of radius r rotating at an rpm of 7. Noting that work W is



force times distance, and power W is work done per unit time and thus force
times velocity, we have W, = FV = Fro = Mw. Therefore, the power
transmitted by a shaft rotating at an rpm of 7 under the influence of an
applied torque M is (Fig. 6-31)

Shaft power: Wt = @M = 2mnM (6-38)

The kinetic energy of a body of mass m during translational motion is
KE = mV2. Noting that V = rw, the rotational kinetic energy of a body of
mass m at a distance r from the axis of rotation is KE = 3mr?w?. The total
rotational kinetic energy of a rotating rigid body about an axis is determined
by integrating the rotational kinetic energies of differential masses dm over
the entire body to give

1
Rotational kinetic energy: KE, = Elaﬂ (6-39)

where again [ is the moment of inertia of the body and w is the angular
velocity.

During rotational motion, the direction of velocity changes even when its
magnitude remains constant. Velocity is a vector quantity, and thus a change
in direction constitutes a change in velocity with time, and thus accelera-
tion. This is called centripetal acceleration. Its magnitude is

VL

a rw
r

r

Centripetal acceleration is directed toward the axis of rotation (opposite
direction of radial acceleration), and thus the radial acceleration is negative.
Noting that acceleration is a constant multiple of force, centripetal accelera-
tion is the result of a force acting on the body toward the axis of rotation,
known as the centripetal force, whose magnitude is F, = mV?/r. Tangential
and radial accelerations are perpendicular to each other (since the radial and
tangential directions are perpendicular), and the total linear acceleration is
determined by their vector sum, @ = @, + a,. For a body rotating at con-
stant angular velocity, the only acceleration is the centripetal acceleration.
The centripetal force does not produce torque since its line of action inter-
sects the axis of rotation.

6-6 = THE ANGULAR MOMENTUM EQUATION

The linear momentum equation discussed in Section 6—4 is useful for deter-
mining the relationship between the linear momentum of flow streams
and the resultant forces. Many engineering problems involve the moment
of the linear momentum of flow streams, and the rotational effects caused
by them. Such problems are best analyzed by the angular momentum equa-
tion, also called the moment of momentum equation. An important class of
fluid devices, called turbomachines, which include centrifugal pumps, tur-
bines, and fans, is analyzed by the angular momentum equation.

The moment of a force F about a point O is the vector (or cross) product
(Fig. 6-32)

Moment of a force: M=7XF (6-40)
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w = 27n

\

Wehate = @M = 2mnM

FIGURE 6-31
The relations between angular
velocity, rpm, and the power

transmitted through a rotating shaft.

Direction of
rotation

FIGLLRE 6-32
The moment of a force F about a

point O is the vector product of the

.. -
position vector r and F'.
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Sense of the
moment

Axis of
rotation I

FIGURE 6-33
The determination of the direction of
the moment by the right-hand rule.
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The angular momentum equation
is obtained by replacing B in the
Reynolds transport theorem by the
angular momentum H, and b by
the angular momentum per unit
mass 7 X V.

where 7 is the position vector from point O to any point on the line of
action of F. The vector product of two vectors is a vector whose line of
action is normal to the plane that contains the crossed vectors (¥ and Fin
this case) and whose magnitude is

Magnitude of the moment of a force: M = Frsin 0 (6-41)

where 6 is the angle between the lines of action of the vectors  and F.
Therefore, the magnitude of the moment about point O is equal to the mag-
nitude of the force multiplied by the normal distance of the line of action
of the force from the point O. The sense of the moment vector M is deter-
mined by the right-hand rule: when the fingers of the right hand are curled
in the direction that the force tends to cause rotation, the thumb points the
direction of the moment vector (Fig. 6-33). Note that a force whose line of
action passes through pomt O produces zero moment about point O.

The vector product of 7 and the momentum vector my gives the moment of
momentum, also called the angular momentum, about a point O as

Moment of momentum: H=7xmV (6-42)

Therefore, ¥ X v represents the angular momentum per un1t mass, and the
angular momentum of a differential mass ém = p dV is dH = (7 X V)p dv.
Then the angular momentum of a system is determined by integration to be

Moment of momentum (system): H s = J (7 X \7);) av (6-43)
sys
The rate of change of the moment of momentum is
dﬁ sys d - g
Rate of change of moment of momentum: o = " J (rF X V)pdV (6-44)
sys

The angular momentum equation for a system was expressed in Eq. 6-2 as

SM = Ho, (6-45)

where ZM = X(7 X F) is the net torque or moment applied on the sys-
tem, which is the vector sum of the moments of all forces acting on the
system, and dﬁsys/dt is the rate of change of the angular momentum of the
system. Equation 645 is stated as the rate of change of angular momentum
of a system is equal to the net torque acting on the system. This equation is
valid for a fixed quantity of mass and an inertial reference frame, i.e., a refer-
ence frame that is fixed or moves with a constant velocity in a straight path.

The general control volume formulatlon of the angular momentum equa-
tion is obtained by setting b = 7 X V and thus B = H in the general Reyn-
olds transport theorem. It gives (Fig. 6-34)

Lo vvars [exvnia
=—| FXVypdV+ | FXV)p(V-ii)dA (6-46)
dt dt Jey cs

The left-hand side of this equation is, from Eq. 645, equal to S M. Substi-
tuting, the angular momentum equation for a general control volume (sta-
tionary or moving, fixed shape or distorting) is

— d N — N — =2
General: >SM = —J FXV)pdV + J (7 X V)p(V.-1) dA (6-47)
dt Jey cs



which is stated in words as

The net flow rate of

The sum of all The time rate of change
angular momentum
external moments | = | of the angular momentum | +
. out of the control
acting on a CV of the contents of the CV

surface by mass flow

Again, 7, =V - Vcs is the fluid velocity relative to the control surface (for
use in mass flow rate calculations at all locations where the fluid crosses the
control surface), and Vi is the fluid velocity as viewed from a fixed reference
frame. The product p(V 1) dA represents the mass flow rate through dA
into or out of the control volume, depending on the sign.

For a fixed control volume (no motion or deformation of the control
volume), V = V and the angular momentum equation becomes

FixedCV:  S\M = —J (7 X V)pdV + J (7 X V)p(V-ii) dA (6-48)
dr Jey cs

Also, note that the forces acting on the control volume consist of body
forces that act throughout the entire body of the control volume such as grav-
ity, and surface forces that act on the control surface such as the pressure and
reaction forces at points of contact. The net torque consists of the moments
of these forces as well as the torques applied on the control volume.

Special Cases

During steady flow, the amount of angular momentum within the con-
trol volume remains constant, and thus the time rate of change of angular
momentum of the contents of the control volume is zero. Then,

Steady flow: M= J (F X V)p(V-1i) dA (6-49)
CS

In many practical applications, the fluid crosses the boundaries of the control
volume at a certain number of inlets and outlets, and it is convenient to replace
the area integral by an algebraic expression written in terms of the average prop-
erties over the cross-sectional areas where the fluid enters or leaves the control
volume. In such cases, the angular momentum flow rate can be expressed as
the difference in the angular momentum of outgoing and incoming streams.
Furthermore, in many cases the moment arm 7 is either constant along the
inlet or outlet (as in radial flow turbomachines) or is large compared to the
diameter of the inlet or outlet pipe (as in rotating lawn sprinklers, Fig. 6-35).
In such cases, the average value of 7 is used throughout the cross-sectional
area of the inlet or outlet. Then, an approximate form of the angular momen-
tum equation in terms of average properties at inlets and outlets becomes

— d

SM= EJ (F X VypdV + (7 X mV) — E(r X mV)  (6-50)
out

You may be wondering why we don’t introduce a correction factor into

Eq. 6-50, like we did for conservation of energy (Chap. 5) and for conserva-

tion of linear momentum (Section 6-4). The reason is that the cross product

of 7 and mV is dependent on problem geometry, and thus, such a correction
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FIGURE 6-35

A rotating lawn sprinkler is a good
example of application of the angular
momentum equation.

© John A. Rizzo/Getty RF
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>

FIGURE 6-36

The net torque acting on a control
volume during steady flow is equal

to the difference between the outgoing
and incoming angular momentum
flow rates.

factor would vary from problem to problem. Therefore, whereas we can
readily calculate a kinetic energy flux correction factor and a momentum
flux correction factor for fully developed pipe flow that can be applied to
various problems, we cannot do so for angular momentum. Fortunately, in
many problems of practical engineering interest, the error associated with
using average values of radius and velocity is small, and the approximation
of Eq. 6-50 is reasonable.
If the flow is steady, Eq. 650 further reduces to (Fig. 6-36)

Steady flow: 2117 E(r X mV) - E(r X mV) (6-51)
out

Equation 6-51 states that the net torque acting on the control volume during
steady flow is equal to the difference between the outgoing and incoming
angular momentum flow rates. This statement can also be expressed for any
specified direction. Note that velocity Vin Eq. 6-51 is the velocity relative
to an inertial coordinate system.

In many problems, all the significant forces and momentum flows are in the
same plane, and thus all give rise to moments in the same plane and about the
same axis. For such cases, Eq. 6-51 can be expressed in scalar form as

SM = > mV - > mV (6-52)
out mn
where r represents the average normal distance between the point about
which moments are taken and the line of action of the force or velocity,
provided that the sign convention for the moments is observed. That is, all
moments in the counterclockwise direction are positive, and all moments in
the clockwise direction are negative.

Flow with No External Moments
When there are no external moments applied, the angular momentum equa-
tion Eq. 6-50 reduces to
dHy
dt

No external moments: 0=

+ 2(F X mV) — S (F X mV)  (6-53)
out in

This is an expression of the conservation of angular momentum principle,

which can be stated as in the absence of external moments, the rate of

change of the angular momentum of a control volume is equal to the differ-

ence between the incoming and outgoing angular momentum fluxes.

‘When the moment of inertia I of the control volume remains constant, the
first term on the right side of Eq. 6-53 becomes simply moment of inertia
times angular acceleration, Ia. Therefore, the control volume in this case
can be treated as a solid body, with a net torque of

Mgy = Tyoay @ E(r X mVy — 37 X mV) (6-54)

out

(due to a change of angular momentum) acting on it. This approach can
be used to determine the angular acceleration of space vehicles and aircraft
when a rocket is fired in a direction different than the direction of motion.



Impeller

Side view Frontal view

Radial-Flow Devices

Many rotary-flow devices such as centrifugal pumps and fans involve flow
in the radial direction normal to the axis of rotation and are called radial-
flow devices (Chap. 14). In a centrifugal pump, for example, the fluid enters
the device in the axial direction through the eye of the impeller, turns out-
ward as it flows through the passages between the blades of the impel-
ler, collects in the scroll, and is discharged in the tangential direction, as
shown in Fig. 6-37. Axial-flow devices are easily analyzed using the linear
momentum equation. But radial-flow devices involve large changes in angu-
lar momentum of the fluid and are best analyzed with the help of the angu-
lar momentum equation.

To analyze a centrifugal pump, we choose the annular region that encloses
the impeller section as the control volume, as shown in Fig. 6-38. Note that
the average flow velocity, in general, has normal and tangential components
at both the inlet and the outlet of the impeller section. Also, when the shaft
rotates at angular velocity w, the impeller blades have tangential velocity wr,
at the inlet and wr;, at the outlet. For steady, incompressible flow, the conser-
vation of mass equation is written as

V=V, =V = Qmrb)V,, = Qurb)V,, (6-55)

where b, and b, are the flow widths at the inlet where r = r| and at the
outlet where r = r,, respectively. (Note that the actual circumferential
cross-sectional area is somewhat less than 27rb since the blade thickness
is not zero.) Then the average normal components V; , and V, , of abso-
lute velocity can be expressed in terms of the volumetric flow rate V as
v %
Vin = b, and V,,

- 2mr,b, 6-58)
The normal velocity components V, , and V, , as well as pressure acting
on the inner and outer circumferential areas pass through the shaft center,
and thus they do not contribute to torque about the origin. Then only the
tangential velocity components contribute to torque, and the application of
the angular momentum equation EM = ErrhV - ErndV to the control
volume gives out in

Euler’s turbine equation: Topare = MV, — 1 Vi) (6-57)
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FIGURE 6-37
Side and frontal views of a typical
centrifugal pump.

FIGURE 6-38

An annular control volume that
encloses the impeller section of a
centrifugal pump.
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FIGURE 6-39

Schematic for Example 6—8 and the
free-body diagram.

which is known as Euler’s turbine equation. When the angles «; and o,
between the direction of absolute flow velocities and the radial direction are
known, Eq. 6-57 becomes

T = m(n,V,sin a, — 1V, sin a;) (6-58)

In the idealized case of the tangential fluid velocity being equal to the blade
angular velocity both at the inlet and the exit, we have V| , = wr; and V, , =
wr,, and the torque becomes

Tonate, ideat = ma(r: % -r %) (6-59)

where w = 27 is the angular velocity of the blades. When the torque is
known, the shaft power is determined from W, = oTy 4 = 27Ty .

EXAMPLE 6-8 Bending Moment Acting at the Base
of a Water Pipe

Underground water is pumped through a 10-cm-diameter pipe that consists ®
of a 2-m-long vertical and 1-m-long horizontal section, as shown in Fig. 6-39. §
Water discharges to atmospheric air at an average velocity of 3 m/s, and the
mass of the horizontal pipe section when filled with water is 12 kg per meter
length. The pipe is anchored on the ground by a concrete base. Determine
the bending moment acting at the base of the pipe (point A) and the required
length of the horizontal section that would make the moment at point A zero.

SOLUTION Water is pumped through a piping section. The moment acting
at the base and the required length of the horizontal section to make this
moment zero is to be determined.
Assumptions 1 The flow is steady. 2 The water is discharged to the atmo-
sphere, and thus the gage pressure at the outlet is zero. 3 The pipe diameter
is small compared to the moment arm, and thus we use average values of
radius and velocity at the outlet.
Properties We take the density of water to be 1000 kg/m3.
Analysis We take the entire L-shaped pipe as the control volume, and desig-
nate the inlet by 1 and the outlet by 2. We also take the x- and zcoordinates
as shown. The control volume and the reference frame are fixed.

The conservation of mass equation for this one-inlet, one-outlet, steady-
flow system is m; = m, = m, and V; = V, = V since A, = constant. The
mass flow rate and the weight of the horizontal section of the pipe are

m = pA.V = (1000 kg/m?)[7(0.10 m)*/4](3 m/s) = 23.56 kg/s

W = mg = (12 kg/m)(1 m)(9.81 m/sz)( ) = 117.7N

1 kg-m/s?
To determine the moment acting on the pipe at point A, we need to take the
moment of all forces and momentum flows about that point. This is a steady-
flow problem, and all forces and momentum flows are in the same plane.
Therefore, the angular momentum equation in this case is expressed as
SM = >V — > mV
out in

where r is the average moment arm, V is the average speed, all moments in
the counterclockwise direction are positive, and all moments in the clock-
wise direction are negative.



The free-body diagram of the L-shaped pipe is given in Fig. 6-39. Noting
that the moments of all forces and momentum flows passing through point A
are zero, the only force that yields a moment about point A is the weight W
of the horizontal pipe section, and the only momentum flow that yields a
moment is the outlet stream (both are negative since both moments are in
the clockwise direction). Then the angular momentum equation about point A
becomes

M, — rnW = —rmV,
Solving for M, and substituting give
M, =W — rymV,

(0.5 m)(118 N) — (2 m)(23.56 kg/s)(3 m’”(méi&)

= —82.5 N'm

The negative sign indicates that the assumed direction for M, is wrong and
should be reversed. Therefore, a moment of 82.5 N-m acts at the stem of
the pipe in the clockwise direction. That is, the concrete base must apply a
82.5 N-m moment on the pipe stem in the clockwise direction to counteract
the excess moment caused by the exit stream.

The weight of the horizontal pipe is w = W/L = 117.7 N per m length.
Therefore, the weight for a length of Lm is Lw with a moment arm of r; = L/2.
Setting M, = O and substituting, the length L of the horizontal pipe that
would cause the moment at the pipe stem to vanish is determined to be

0=nrW-—rmV, — 0= L2)Lw — ryV,

or

\/2r2n'1V2 B \/2(2 m)(23.56 kg/s)(3 m/s) ( N

= 1.55
” 117.7 N/m kg-m/sz> m

Discussion Note that the pipe weight and the momentum of the exit stream
cause opposing moments at point A. This example shows the importance of
accounting for the moments of momentums of flow streams when performing
a dynamic analysis and evaluating the stresses in pipe materials at critical
cross sections.

EXAMPLE 6-9 Power Generation from a Sprinkler System

A large lawn sprinkler (Fig. 6-40) with four identical arms is to be con-
verted into a turbine to generate electric power by attaching a generator to
its rotating head, as shown in Fig. 6-41. Water enters the sprinkler from
the base along the axis of rotation at a rate of 20 L/s and leaves the nozzles
in the tangential direction. The sprinkler rotates at a rate of 300 rpm in a
horizontal plane. The diameter of each jet is 1 cm, and the normal distance
between the axis of rotation and the center of each nozzle is 0.6 m. Esti-
mate the electric power produced.

SOLUTION A four-armed sprinkler is used to generate electric power. For a
specified flow rate and rotational speed, the power produced is to be deter-
mined.
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FIGURE 6-40

Lawn sprinklers often have
rotating heads to spread the
water over a large area.

© Andy Sotiriou/Getty RF
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Schematic for Example 6-9 and the

free-body diagram.

Assumptions 1 The flow is cyclically steady (i.e., steady from a frame of
reference rotating with the sprinkler head). 2 The water is discharged to the
atmosphere, and thus the gage pressure at the nozzle exit is zero. 3 Genera-
tor losses and air drag of rotating components are neglected. 4 The nozzle
diameter is small compared to the moment arm, and thus we use average
values of radius and velocity at the outlet.

Properties We take the density of water to be 1000 kg/m3 = 1 kg/L.
Analysis We take the disk that encloses the sprinkler arms as the control
volume, which is a stationary control volume.

The conservation of mass equation for this steady-flow system is m;, = m, =
Mora- Noting that the four nozzles are identical, we have M,y e = Migra/4 OF
Viose = Vioa/4 Since the density of water is constant. The average jet exit
velocity relative to the rotating nozzle is

v _ Vnozzle _ 5L/s < 1m3
[7(0.01 m)*4] \ 1000 L

e = > = 63.66 m/s

jet

The angular and tangential velocities of the nozzles are

. . 1 min
w = 2mn = 2w(300 rev/min)
60 s

> = 3142 rad/s

v

nozzle

= row = (0.6 m)(31.42 rad/s) = 18.85 m/s

Note that water in the nozzle is also moving at an average velocity of
18.85 m/s in the opposite direction when it is discharged. The average abso-
lute velocity of the water jet (velocity relative to a fixed location on earth) is
the vector sum of its relative velocity (jet velocity relative to the nozzle) and
the absolute nozzle velocity,

Vjet = Vjet,r + Vnozzle

All of these three velocities are in the tangential direction, and taking the
direction of jet flow as positive, the vector equation can be written in scalar

form using magnitudes as
V.=V, —V

jet jet,r
Noting that this is a cyclically steady-flow problem, and all forces and
momentum flows are in the same plane, the angular momentum equation
is approximated as > M = > riV — > riV, where r is the moment arm,

out in

all moments in the counterclockwise direction are positive, and all moments
in the clockwise direction are negative.

The free-body diagram of the disk that contains the sprinkler arms is given
in Fig. 6-41. Note that the moments of all forces and momentum flows
passing through the axis of rotation are zero. The momentum flows via the
water jets leaving the nozzles yield a moment in the clockwise direction and
the effect of the generator on the control volume is a moment also in the
clockwise direction (thus both are negative). Then the angular momentum
equation about the axis of rotation becomes

v

jet

= 63.66 — 18.85 = 44 .81 m/s

nozzle

_Tshaft = —4rm or Tshaft = r’ntotalV

nozzle jet

Substituting, the torque transmitted through the shaft is

) = 537.7N'm

. 1
Topare = Mo Vi = (0.6 m)(20 kg/s)(44.81 m/s)(i1 kg m/s?



since My = PV = (1 kg/L)(20 L/s) = 20 kg/s.
Then the power generated becomes

1 kW

V= wT,,, = (3142 377Nm)| ——————
W= 0Ty = ( rad/s)(5 m)(IOOO Norm/s

> = 16.9 kW
Therefore, this sprinkler-type turbine has the potential to produce 16.9 kW
of power.

Discussion To put the result obtained in perspective, we consider two lim-
iting cases. In the first limiting case, the sprinkler is stuck, and thus, the
angular velocity is zero. The torque developed is maximum in this case, since
Viozze = 0. Thus Vi = Vip . = 63.66 m/s, giving Tgan ma = 764 N-m. The
power generated is zero since the generator shaft does not rotate.

In the second limiting case, the sprinkler shaft is disconnected from the
generator (and thus both the useful torque and power generation are zero),
and the shaft accelerates until it reaches an equilibrium velocity. Setting
Tgae = O in the angular momentum equation gives the absolute water-jet
velocity (jet velocity relative to an observer on earth) to be zero, Vi, = 0.
Therefore, the relative velocity Vi, , and absolute velocity V. are equal but
in opposite direction. So, the absolute tangential velocity of the jet (and thus
torque) is zero, and the water mass drops straight down like a waterfall under
gravity with zero angular momentum (around the axis of rotation). The angular
speed of the sprinkler in this case is

_ i _ Vnozzle _ 63.66 Hl/S/ 60 s
27 2arr 27r(0.6 m)\l min

n ) = 1013 rpm
Of course, the Ty« = O case is possible only for an ideal, frictionless nozzle (i.e.,
100 percent nozzle efficiency, as a no-load ideal turbine). Otherwise, there would
be a resisting torque due to friction of the water, shaft, and surrounding air.
The variation of power produced with angular speed is plotted in Fig. 6-42.
Note that the power produced increases with increasing rpm, reaches a maxi-
mum (at about 500 rpm in this case), and then decreases. The actual power
produced would be less than this due to generator inefficiency (Chap. 5) and
other irreversible losses such as fluid friction within the nozzle (Chap. 8),
shaft friction, and aerodynamic drag (Chap. 11).

g APPLICATION SPOTLIGHT

. Guest Authors: Alexander Smits, Keith Moored and Peter
.~ Dewey, Princeton University

Aquatic animals propel themselves using a wide variety of mechanisms.
Most fish flap their tail to produce thrust, and in doing so they shed two
single vortices per flapping cycle, creating a wake that resembles a reverse
von Kdrmén vortex street. The non-dimensional number that describes this
vortex shedding is the Strouhal number St, where St = fA/U,_, where f is the
frequency of actuation, A is the peak-to-peak amplitude of the trailing edge
motion at the half-span, and U, is the steady swimming velocity. Remark-
ably, a wide variety of fish and mammals swim in the range 0.2 < St < 0.35.

In manta rays (Fig. 6-43), propulsion is achieved by combining oscillatory
and undulatory motions of flexible pectoral fins. That is, as the manta ray
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The variation of power produced
with angular speed for the turbine of
Example 6-9.

FIGURE 6-43

The manta ray is the largest of the
rays, reaching up to 8 m in span.
They swim with a motion that is a
combination of flapping and
undulation of their large pectoral fins.
© Frank & Joyce Burek/Getty RF
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flaps its fins, it is also generating a traveling wave motion along the chord,
opposite to the direction of its motion. This wave motion is not readily
apparent because the wavelength is 6 to 10 times greater than the chord
length. A similar undulation is observed in sting rays, but there it is more
obvious because the wavelength is less than the chord length. Field observa-
tions indicate that many species of manta ray are migratory, and that they
are very efficient swimmers. They are difficult to study in the laboratory
because they are a protected and somewhat fragile creature. However, it is
possible to study many aspects of their swimming behavior by mimicking
their propulsive techniques using robots or mechanical devices such as that
shown in Fig. 6-44. The flow field generated by such a fin displays the vor-
tex shedding seen in other fish studies, and when time-averaged displays a
high momentum jet that contributes to the thrust (Fig 6-—45). The thrust and

FIGURE 6-44 ' ' efficiencies can also be measured directly, and it appears that the undulatory
Manta ray fin mechanism, showing the motion due to the traveling wave is most important to thrust production at
vortex pattern produced in the wake high efficiency in the manta ray.

when it is swimming in a range where
two single vortices are shed into the
wake per flapping cycle. The artificial
flexible fin is actuated by four rigid
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FIGURE 6-45

Measurements of the wake of the
manta ray fin mechanism, with the flow
going from bottom to top. On the left,
we see the vortices shed in the wake,
alternating between positive vorticity
(red) and negative vorticity (blue). The
induced velocities are shown by the
black arrows, and in this case we see
that thrust is being produced. On the
right, we see the time-averaged velocity
field. The unsteady velocity field
induced by the vortices produces a
high velocity jet in the time-averaged
field. The momentum flux associated
with this jet contributes to the total
thrust on the fin.

Image courtesy of Peter Dewey, Keith Moored
and Alexander Smits. Used by permission.
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This chapter deals mainly with the conservation of momen-
tum for finite control volumes. The forces acting on the con-
trol volume consist of body forces that act throughout the
entire body of the control volume (such as gravity, electric,
and magnetic forces) and surface forces that act on the con-
trol surface (such as the pressure forces and reaction forces
at points of contact). The sum of all forces acting on the
contro]l volume at a particular instant in time is represented
by XFand is expressed as

Eﬁ = Eﬁgravity + Eﬁpressure + Eﬁviscous + Eﬁother
——

total force

body force surface forces

Newton’s second law can be stated as the sum of all
external forces acting on a system is equal to the time rate of
change of linear momentum of the system. Setting b = V and
thus B = mV in the Reynolds transport theorem and utilizing
Newton’s second law gives the linear momentum equation
for a control volume as

— d —
F=— Vd\Vv +
2 dtva J

pV(V.-i7) dA
CS

which reduces to the following special cases:

SF-|

CS

Steady flow: pV(V.-i1) dA

Unsteady flow (algebraic form):

SF = thVde\/Jr SV — 3 gV

out in

Steady flow (algebraic form): EF = E,IS'm‘7 — E,Bm‘7
out in

d(mV N N

A0 Vey dt)c" + > pmV — > pmV

out in

No external forces: 0 =

where  is the momentum-flux correction factor. A con-
trol volume whose mass m remains constant can be treated
as a solid body (a fixed-mass system) with a net thrusting
Jorce (also called simply the thrust) of

S gV

out

— N =
Fthmsl = Meyad = EBmV -
in

acting on the body.

REFERENCES AND SUGGESTED READING

Newton’s second law can also be stated as the rate of
change of angular momentum of a system is equaL to the net
torque_acting on the system. Setting b = 7 X V and thus
B = H in the general Reynolds transport theorem gives the
angular momentum equation as

S i

d = — - - =
*J (r XV)pdV + J (¥ X V)p(V,-n)dA
dr Jey cs

which reduces to the following special cases:

Steady flow: M= J (F X V)p(V.-11) dA

CS

Unsteady flow (algebraic form):

SE XV - F X mV

out in

= d N =
>M = —J F X V)pdV +
dt Jov

Steady and uniform flow:

SM=S7FxmnV - 37XV

out m

Scalar form for one direction:
SM = DV — DV
out in

No external moments:

—

dHy

O=
dt

+ DXV = 37 X mV

out in

A control volume whose moment of inertia / remains constant
can be treated as a solid body (a fixed-mass system), with a
net torque of

acting on the body. This relation is used to determine the
angular acceleration of a spacecraft when a rocket is fired.

The linear and angular momentum equations are of funda-
mental importance in the analysis of turbomachinery and are
used extensively in Chap. 14.

1. P. K. Kundu, I. M. Cohen, and D. R. Dowling. Fluid
Mechanics, ed. 5. San Diego, CA: Academic Press, 2011.

2. Terry Wright, Fluid Machinery: Performance, Analysis,
and Design, Boca Raton, FL: CRC Press, 1999.
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PROBLEMS*

Newton’s Laws and Conservation of Momentum
6-1C Express Newton’s first, second, and third laws.

6-2C Express Newton’s second law of motion for rotat-
ing bodies. What can you say about the angular velocity and
angular momentum of a rotating nonrigid body of constant
mass if the net torque acting on it is zero?

6-3C Is momentum a vector? If so, in what direction does
it point?
6-4C Express the conservation of momentum principle.

What can you say about the momentum of a body if the net
force acting on it is zero?

Linear Momentum Equation

6-5C Two firefighters are fighting a fire with identical
water hoses and nozzles, except that one is holding the hose
straight so that the water leaves the nozzle in the same direc-
tion it comes, while the other holds it backward so that the
water makes a U-turn before being discharged. Which fire-
fighter will experience a greater reaction force?

6-6C How do surface forces arise in the momentum analy-
sis of a control volume? How can we minimize the number
of surface forces exposed during analysis?

6-7C Explain the importance of the Reynolds transport
theorem in fluid mechanics, and describe how the linear
momentum equation is obtained from it.

6-8C What is the importance of the momentum-flux cor-
rection factor in the momentum analysis of flow systems?
For which type(s) of flow is it significant and must it be con-
sidered in analysis: laminar flow, turbulent flow, or jet flow?

6-9C Write the momentum equation for steady one-
dimensional flow for the case of no external forces and
explain the physical significance of its terms.

6-10C In the application of the momentum equation,
explain why we can usually disregard the atmospheric pres-
sure and work with gage pressures only.

6-11C A rocket in space (no friction or resistance to
motion) can expel gases relative to itself at some high veloc-
ity V. Is V the upper limit to the rocket’s ultimate velocity?

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the Sl users can ignore them.
Problems with the icon are solved using EES, and complete
solutions together with parametric studies are included on the
text website. Problems with the icon are comprehensive in
nature and are intended to be solved with an equation solver
such as EES.

6-12C Describe in terms of momentum and airflow how a
helicopter is able to hover.

FIGURE P6-12C
© JupiterImages/Thinkstock/Alamy RF

6-13C Does it take more, equal, or less power for a heli-
copter to hover at the top of a high mountain than it does at
sea level? Explain.

6-14C 1In a given location, would a helicopter require more
energy in summer or winter to achieve a specified perform-
ance? Explain.

6-15C A horizontal water jet from a nozzle of constant exit
cross section impinges normally on a stationary vertical flat
plate. A certain force F is required to hold the plate against
the water stream. If the water velocity is doubled, will the
necessary holding force also be doubled? Explain.

6-16C Describe body forces and surface forces, and
explain how the net force acting on a control volume is deter-
mined. Is fluid weight a body force or surface force? How
about pressure?

6-17C A constant-velocity horizontal water jet from a sta-
tionary nozzle impinges normally on a vertical flat plate that
rides on a nearly frictionless track. As the water jet hits the
plate, it begins to move due to the water force. Will the accel-
eration of the plate remain constant or change? Explain.

—

Nozzle —
pr— g

\Water jet

FIGURE P6-17C

6-18C A horizontal water jet of constant velocity V from
a stationary nozzle impinges normally on a vertical flat plate
that rides on a nearly frictionless track. As the water jet hits



the plate, it begins to move due to the water force. What is
the highest velocity the plate can attain? Explain.

6-19 Water enters a 10-cm-diameter pipe steadily with a
uniform velocity of 3 m/s and exits with the turbulent flow
velocity distribution given by u = u,, (1 — /R)". If the
pressure drop along the pipe is 10 kPa, determine the drag
force exerted on the pipe by water flow.

6-20 A 2.5-cm-diameter horizontal water jet with a speed
of V; = 40 m/s relative to the ground is deflected by a 60°
stationary cone whose base diameter is 25 cm. Water velocity
along the cone varies linearly from zero at the cone surface
to the incoming jet speed of 40 m/s at the free surface. Disre-
garding the effect of gravity and the shear forces, determine
the horizontal force F' needed to hold the cone stationary.

Water jet, VJ

—

FIGURE P6-20

6-21 A horizontal water jet of constant velocity V impinges
normally on a vertical flat plate and splashes off the sides in
the vertical plane. The plate is moving toward the oncoming
water jet with velocity V. If a force F is required to maintain
the plate stationary, how much force is required to move the
plate toward the water jet?

Vv
—_—
j——)
Water jet
FIGURE P6-21

6-22 A 90° elbow in a horizontal pipe is used to direct
water flow upward at a rate of 40 kg/s. The diameter of the
entire elbow is 10 cm. The elbow discharges water into the
atmosphere, and thus the pressure at the exit is the local
atmospheric pressure. The elevation difference between the
centers of the exit and the inlet of the elbow is 50 cm. The
weight of the elbow and the water in it is considered to be
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negligible. Determine (a) the gage pressure at the center of
the inlet of the elbow and (b) the anchoring force needed to
hold the elbow in place. Take the momentum-flux correction
factor to be 1.03 at both the inlet and the outlet.

FIGURE P6-22

6-23 Repeat Prob. 6-22 for the case of another (identical)
elbow attached to the existing elbow so that the fluid makes a
U-turn.  Answers: (a) 9.81 kPa, (b) 497 N

6-24E A horizontal water jet impinges against a vertical
flat plate at 25 ft/s and splashes off the sides in the verti-
cal plane. If a horizontal force of 350 Ibf is required to hold
the plate against the water stream, determine the volume flow
rate of the water.

6-25 A reducing elbow in a horizontal pipe is used to deflect
water flow by an angle § = 45° from the flow direction while
accelerating it. The elbow discharges water into the atmo-
sphere. The cross-sectional area of the elbow is 150 cm? at the
inlet and 25 cm? at the exit. The elevation difference between
the centers of the exit and the inlet is 40 cm. The mass of the
elbow and the water in it is 50 kg. Determine the anchoring
force needed to hold the elbow in place. Take the momentum-
flux correction factor to be 1.03 at both the inlet and outlet.

25 cm?

2
150 cmy 40 em

‘Water
30.0 kg/s .
FIGURE P6-25

6-26 Repeat Prob. 6-25 for the case of § = 110°.

6-27 Water accelerated by a nozzle to 35 m/s strikes the
vertical back surface of a cart moving horizontally at a con-
stant velocity of 10 m/s in the flow direction. The mass flow
rate of water through the stationary nozzle is 30 kg/s. After
the strike, the water stream splatters off in all directions in
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the plane of the back surface. (@) Determine the force that
needs to be applied by the brakes of the cart to prevent it
from accelerating. (b) If this force were used to generate
power instead of wasting it on the brakes, determine the
maximum amount of power that could ideally be generated.
Answers: (a) —536 N, (b) 5.36 kW

35 m/s
—_—

\
Water jet

FIGURE P6-27

6-28 Reconsider Prob. 6-27. If the mass of the cart is
400 kg and the brakes fail, determine the acceleration of the
cart when the water first strikes it. Assume the mass of water
that wets the back surface is negligible.

6-29E A 100-ft’/s water jet is moving in the positive
x-direction at 18 ft/s. The stream hits a stationary splitter,
such that half of the flow is diverted upward at 45° and the
other half is directed downward, and both streams have a final
average speed of 18 ft/s. Disregarding gravitational effects,
determine the x- and z-components of the force required to
hold the splitter in place against the water force.

18 ft/s

Z
45°
=100 ft¥/s =
45°

— Splitter

N

FIGURE P6-29E

S== software, investigate the effect of the splitter
angle on the force exerted on the splitter in the incoming
flow direction. Let the half splitter angle vary from 0° to
180° in increments of 10°. Tabulate and plot your results, and
draw some conclusions.

6-31 A horizontal 5-cm-diameter water jet with a velocity
of 18 m/s impinges normally upon a vertical plate of mass
1000 kg. The plate rides on a nearly frictionless track and is
initially stationary. When the jet strikes the plate, the plate
begins to move in the direction of the jet. The water always

splatters in the plane of the retreating plate. Determine
(a) the acceleration of the plate when the jet first strikes it
(time = 0), (b) the time it takes for the plate to reach a veloc-
ity of 9 m/s, and (c) the plate velocity 20 s after the jet first
strikes the plate. For simplicity, assume the velocity of the
jet is increased as the cart moves such that the impulse force
exerted by the water jet on the plate remains constant.

6-32E A fan with 24-in-diameter blades moves 2000 cfm
(cubic feet per minute) of air at 70°F at sea level. Determine
(a) the force required to hold the fan and (b) the minimum
power input required for the fan. Choose a control volume
sufficiently large to contain the fan, with the inlet sufficiently
far upstream so that the gage pressure at the inlet is nearly
zero. Assume air approaches the fan through a large area with
negligible velocity and air exits the fan with a uniform veloc-
ity at atmospheric pressure through an imaginary cylinder
whose diameter is the fan blade diameter. ~Answers: (a) 0.820 Ibf,
(b) 5.91 W

6-33E A 3-in-diameter horizontal jet of water, with veloc-
ity 140 ft/s, strikes a bent plate, which deflects the water by
135° from its original direction. How much force is required
to hold the plate against the water stream and what is its
direction? Disregard frictional and gravitational effects.

6-34 Firefighters are holding a nozzle at the end of a hose
while trying to extinguish a fire. If the nozzle exit diameter
is 8 cm and the water flow rate is 12 m’/min, determine
(a) the average water exit velocity and (b) the horizontal
resistance force required of the firefighters to hold the nozzle.
Answers: (a) 39.8 m/s, (b) 7958 N

FIGURE P6-34

6-35 A 5-cm-diameter horizontal jet of water with a velocity
of 40 m/s relative to the ground strikes a flat plate that is mov-
ing in the same direction as the jet at a velocity of 10 m/s.
The water splatters in all directions in the plane of the plate.
How much force does the water stream exert on the plate?

6-36 _Reconsider Prob. 6-35. Using EES (or other)

= software, investigate the effect of the plate
velocity on the force exerted on the plate. Let the plate veloc-
ity vary from O to 30 m/s, in increments of 3 m/s. Tabulate
and plot your results.




6-37E A 3-in-diameter horizontal water jet having a velocity
of 90 ft/s strikes a curved plate, which deflects the water 180°
at the same speed. Ignoring the frictional effects, determine the
force required to hold the plate against the water stream.

Water jet
90 ft/s <t

3in

90 ft/s m—b f
T

FIGURE P6-37

6-38 An unloaded helicopter of mass 12,000 kg hovers
at sea level while it is being loaded. In the unloaded hover
mode, the blades rotate at 550 rpm. The horizontal blades
above the helicopter cause a 18-m-diameter air mass to move
downward at an average velocity proportional to the over-
head blade rotational velocity (rpm). A load of 14,000 kg is
loaded onto the helicopter, and the helicopter slowly rises.
Determine (a) the volumetric airflow rate downdraft that the
helicopter generates during unloaded hover and the required
power input and (b) the rpm of the helicopter blades to hover
with the 14,000-kg load and the required power input. Take
the density of atmospheric air to be 1.18 kg/m3. Assume air
approaches the blades from the top through a large area with
negligible velocity and air is forced by the blades to move
down with a uniform velocity through an imaginary cylinder
whose base is the blade span area.

18 m

Load
14,000 kg

FIGURE P6-38

6-39 Reconsider the helicopter in Prob. 6-38, except that
it is hovering on top of a 2800-m-high mountain where the
air density is 0.928 kg/m?. Noting that the unloaded heli-
copter blades must rotate at 550 rpm to hover at sea level,
determine the blade rotational velocity to hover at the higher
altitude. Also determine the percent increase in the required
power input to hover at 3000-m altitude relative to that at sea
level. Answers: 620 rpm, 12.8 percent
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6-40 Water is flowing through a 10-cm-diameter water pipe
at a rate of 0.1 m%s. Now a diffuser with an outlet diameter
of 20 cm is bolted to the pipe in order to slow down water,
as shown in Fig. P6-40. Disregarding frictional effects, deter-
mine the force exerted on the bolts due to the water flow.

-1-d =10 cm

D =20cm
Diffuser

FIGURE P6-40

6-41 The weight of a water tank open to the atmosphere is
balanced by a counterweight, as shown in Fig. P6-41. There
is a 4-cm hole at the bottom of the tank with a discharge
coefficient of 0.90, and water level in the tank is maintained
constant at 50 cm by water entering the tank horizontally.
Determine how much mass must be added to or removed
from the counterweight to maintain balance when the hole at
the bottom is opened.

AN
Y .
B Water h =50cm
”'H Hole,d = 4 cm
FIGURE P6—41

642 %@!& Commercially available large wind turbines have
blade span diameters larger than 100 m and
generate over 3 MW of electric power at peak design conditions.

FIGURE P6-42
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Consider a wind turbine with a 60-m blade span subjected to
30-km/h steady winds. If the combined turbine—generator
efficiency of the wind turbine is 32 percent, determine (a) the
power generated by the turbine and () the horizontal force
exerted by the wind on the supporting mast of the turbine.
Take the density of air to be 1.25 kg/m?, and disregard fric-
tional effects on mast.

6-43 Water enters a centrifugal pump axially at atmo-
spheric pressure at a rate of 0.09 m%s and at a velocity of
5 m/s, and leaves in the normal direction along the pump cas-
ing, as shown in Fig. P6-43. Determine the force acting on
the shaft (which is also the force acting on the bearing of the
shaft) in the axial direction.

Blade

Impeller

FIGURE P6-43

6—44 An incompressible fluid of density p and viscosity w
flows through a curved duct that turns the flow 180°. The duct
cross-sectional area remains constant. The average velocity,
momentum flux correction factor, and gage pressure are known
at the inlet (1) and outlet (2), as in Fig. P6-44. (a) Write an
expression for the horizontal force F, of the fluid on the walls of
the duct in terms of the given variables. (b) Verify your expres-
sion by plugging in the following values: p = 998.2 kg/m?,
u = 1.003 X 1073 kg/m-s, A, = A, = 0.025 m?, B, = 1.01,
By = 103, V; = 10 m/s, P, 4, = 7847 kPa, and P, .. =
65.23 kPa. Answer: (b) F, = 8680 N to the right

Vi

By
Pl,gage

Vy

B
P 2.gage

FIGURE P6-44

6-45 Consider the curved duct of Prob. 6-44, except allow
the cross-sectional area to vary along the duct (A, # A,). (a)
Write an expression for the horizontal force F, of the fluid
on the walls of the duct in terms of the given variables. (b)
Verify your expression by plugging in the following values:
p = 998.2 kg/m?, A, = 0.025 m?, A, = 0.015 m?, B, = 1.02,
B, = 1.04, V, = 20 m/s, P, ., = 88.34 kPa, and P, ... =
67.48 kPa. Answer: (b) F, = 30,700 N to the right

6-46 As a follow-up to Prob. 644, it turns out that for a
large enough area ratio A,/A,, the inlet pressure is actually
smaller than the outlet pressure! Explain how this can be true
in light of the fact that there is friction and other irrevers-
ibilities due to turbulence, and pressure must be lost along the
axis of the duct to overcome these irreversibilities.

6-47 An incompressible fluid of density p and viscosity u
flows through a curved duct that turns the flow through angle 6.
The cross-sectional area also changes. The average velocity,
momentum flux correction factor, gage pressure, and area
are known at the inlet (1) and outlet (2), as in Fig. P6-47. (a)
Write an expression for the horizontal force F, of the fluid on
the walls of the duct in terms of the given variables. (b) Verify
your expression by plugging in the following values: § =135°,
p = 998.2 kg/m?, u = 1.003 X 1073 kg/m's, A; = 0.025 m?,
A, = 0.050 m?, B, = 1.01, B, = 1.03, V, = 6 m/s, Pl gage =
78.47 kPa, and P, ,,,. = 65.23 kPa. (Hint: You will first need
to solve for V,.) (¢) At what turning angle is the force maxi-
mized? Answers: (b) F, = 5500 N to the right, (c) 180°

FIGURE P6-47

6-48 Water of density p = 998.2 kg/m? flows through a
fireman’s nozzle—a converging section of pipe that accel-
erates the flow. The inlet diameter is d; = 0.100 m, and
the outlet diameter is d, = 0.050 m. The average velocity,
momentum flux correction factor, and gage pressure are
known at the inlet (1) and outlet (2), as in Fig. P6-48. (a)
Write an expression for the horizontal force F, of the fluid
on the walls of the nozzle in terms of the given variables. (b)
Verify your expression by plugging in the following values:
By = 1.03, B, = 1.02, V, = 4 m/s, P, = 123,000 Pa, and
Py e = 0 Pa. Answer: (b) F, = 583 N to the right
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FIGURE P6-48

6-49 Water flowing in a horizontal 25-cm-diameter pipe at
8 m/s and 300 kPa gage enters a 90° bend reducing section,
which connects to a 15-cm-diameter vertical pipe. The inlet
of the bend is 50 cm above the exit. Neglecting any frictional
and gravitational effects, determine the net resultant force
exerted on the reducer by the water. Take the momentum-flux
correction factor to be 1.04.

6-50 A sluice gate, which controls flow rate in a channel
by simply raising or lowering a vertical plate, is commonly
used in irrigation systems. A force is exerted on the gate due
to the difference between the water heights y, and y, and the
flow velocities V| and V, upstream and downstream from
the gate, respectively. Take the width of the sluice gate (into
the page) to be w. Wall shear stresses along the channel walls
may be ignored, and for simplicity, we assume steady, uni-
form flow at locations 1 and 2. Develop a relationship for the
force Fj acting on the sluice gate as a function of depths y,
and y,, mass flow rate m, gravitational constant g, gate width
w, and water density p.

Sluice gate

FIGURE P6-50

Angular Momentum Equation

6-51C How is the angular momentum equation obtained
from Reynolds transport equations?

6-52C Express the angular momentum equation in scalar
form about a specified axis of rotation for a fixed control vol-
ume for steady and uniform flow.

6-53C Express the unsteady angular momentum equation in
vector form for a control volume that has a constant moment
of inertia /, no external moments applied, one outgoing uni-
form flow stream of velocity V, and mass flow rate .
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6-54C Consider two rigid bodies having the same mass and
angular speed. Do you think these two bodies must have the
same angular momentum? Explain.

6-55 Water is flowing through a 15-cm-diameter pipe that
consists of a 3-m-long vertical and 2-m-long horizontal sec-
tion with a 90° elbow at the exit to force the water to be dis-
charged downward, as shown in Fig. P6-55, in the vertical
direction. Water discharges to atmospheric air at a velocity
of 7 m/s, and the mass of the pipe section when filled with
water is 15 kg per meter length. Determine the moment act-
ing at the intersection of the vertical and horizontal sections
of the pipe (point A). What would your answer be if the flow
were discharged upward instead of downward?

. |‘—2 m—>|

FIGURE P6-55

6-56E A large lawn sprinkler with two identical arms is
used to generate electric power by attaching a generator to its
rotating head. Water enters the sprinkler from the base along
the axis of rotation at a rate of 5 gal/s and leaves the nozzles
in the tangential direction. The sprinkler rotates at a rate of
180 rpm in a horizontal plane. The diameter of each jet is
0.5 in, and the normal distance between the axis of rotation
and the center of each nozzle is 2 ft. Determine the maximum
possible electrical power produced.

6-57E Reconsider the lawn sprinkler in Prob. 6-56E. If the
rotating head is somehow stuck, determine the moment act-
ing on the head.

6-58 The impeller of a centrifugal pump has inner and
outer diameters of 13 and 30 cm, respectively, and a flow rate
of 0.15 m%s at a rotational speed of 1200 rpm. The blade
width of the impeller is 8 cm at the inlet and 3.5 cm at the
outlet. If water enters the impeller in the radial direction and
exits at an angle of 60° from the radial direction, determine
the minimum power requirement for the pump.

6-59 The impeller of a centrifugal blower has a radius of
18 cm and a blade width of 6.1 cm at the inlet, and a radius of
30 cm and a blade width of 3.4 cm at the outlet. The blower
delivers atmospheric air at 20°C and 95 kPa. Disregarding
any losses and assuming the tangential components of air
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velocity at the inlet and the outlet to be equal to the impel-
ler velocity at respective locations, determine the volumet-
ric flow rate of air when the rotational speed of the shaft is
900 rpm and the power consumption of the blower is 120 W.
Also determine the normal components of velocity at the
inlet and outlet of the impeller.

Outlet

FIGURE P6-59

6-60 Water enters vertically and steadily at a rate of 35 L/s
into the sprinkler shown in Fig. P6-60 with unequal arms
and unequal discharge areas. The smaller jet has a discharge
area of 3 cm? and a normal distance of 50 cm from the axis
of rotation. The larger jet has a discharge area of 5 cm? and
a normal distance of 35 cm from the axis of rotation. Dis-
regarding any frictional effects, determine (a) the rotational
speed of the sprinkler in rpm and () the torque required to
prevent the sprinkler from rotating.

Water Water T
Jet jet
| |
@
| 50 cm | 35cm |
I T 1
FIGURE P6-60

6-61 Repeat Prob. 6-60 for a water flow rate of 50 L/s.

662 Consider a centrifugal blower that has a radius of 20 cm
and a blade width of 8.2 cm at the impeller inlet, and a
radius of 45 cm and a blade width of 5.6 cm at the outlet.
The blower delivers air at a rate of 0.70 m/s at a rotational
speed of 700 rpm. Assuming the air to enter the impeller in
the radial direction and to exit at an angle of 50° from the
radial direction, determine the minimum power consumption
of the blower. Take the density of air to be 1.25 kg/m?.

-
- ~

S== rate, investigate the effect of discharge angle «,
on the minimum power input requirements. Assume the air to
enter the impeller in the radial direction (a; = 0°), and vary
o, from 0° to 85° in increments of 5°. Plot the variation of
power input versus «,, and discuss your results.

6-64E Water enters the impeller of a centrifugal pump
radially at a rate of 45 cfm (cubic feet per minute) when
the shaft is rotating at 500 rpm. The tangential component
of absolute velocity of water at the exit of the 2-ft outer
diameter impeller is 110 ft/s. Determine the torque applied
to the impeller and the minimum power input to the pump.
Answers: 160 Ibf-ft, 11.3 kW

6-65 A lawn sprinkler with three identical arms is used
to water a garden by rotating in a horizontal plane by the
impulse caused by water flow. Water enters the sprinkler
along the axis of rotation at a rate of 60 L/s and leaves the
1.5-cm-diameter nozzles in the tangential direction. The
bearing applies a retarding torque of T, = 50 N-m due to
friction at the anticipated operating speeds. For a normal dis-
tance of 40 cm between the axis of rotation and the center of
the nozzles, determine the angular velocity of the sprinkler
shaft.

6-66 Pelton wheel turbines are commonly used in hydro-
electric power plants to generate electric power. In these
turbines, a high-speed jet at a velocity of V; impinges on
buckets, forcing the wheel to rotate. The buckets reverse the
direction of the jet, and the jet leaves the bucket making an
angle 8 with the direction of the jet, as shown in Fig. P6-66.
Show that the power produced by a Pelton wheel of radius r
rotating steadily at an angular velocity of w is Wy, = pwrV
(V; = wr)(1 — cos B), where p is the density and V is the
volume flow rate of the fluid. Obtain the numerical value
for p = 1000 kg/m?, r = 2 m, V =10 ms, 7 = 150 rpm,
B = 160° and V; = 50 m/s.



not practical. Investigate the effect of 3 on the power genera-
tion by allowing it to vary from 0° to 180°. Do you think we
are wasting a large fraction of power by using buckets with a
B of 160°?

Review Problems

6-68 Water flowing steadily at a rate of 0.16 m?¥/s is deflected
downward by an angled elbow as shown in Fig. P6-68.
For D = 30 cm, d = 10 cm, and & = 50 cm, determine the
force acting on the flanges of the elbow and the angle its line
of action makes with the horizontal. Take the internal vol-
ume of the elbow to be 0.03 m? and disregard the weight of
the elbow material and the frictional effects.

Flange

FIGURE P6-68

6-69 Repeat Prob. 6-68 by taking into consideration the
weight of the elbow whose mass is 5 kg.

6-70 A 12-cm diameter horizontal water jet with a speed of
V; = 25 m/s relative to the ground is deflected by a 40° cone
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moving to the left at V, = 10 m/s. Determine the external
force, F, needed to maintain the motion of the cone. Disregard
the gravity and surface shear effects and assume the cross-
sectional area of water jet normal to the direction of motion
remains constant throughout the flow. Answer: 3240 N

-
640

V. =10m/s

———

Water jet, V]

— I ey
N
FIGURE P6-70
6-71 Water enters vertically and steadily at a rate of

10 L/s into the sprinkler shown in Fig. P6-71. Both water
jets have a diameter of 1.2 cm. Disregarding any frictional
effects, determine (a) the rotational speed of the sprinkler
in rpm and (b) the torque required to prevent the sprinkler
from rotating.

\6%

N
{ L
) -
40 cm | 40 cm
| | 60°
FIGURE P6-71

6-72 Repeat Prob. 6-71 for the case of unequal arms—the
left one being 60 cm and the right one 20 cm from the axis
of rotation.

6-73 A 6-cm-diameter horizontal water jet having a veloc-
ity of 25 m/s strikes a vertical stationary flat plate. The water
splatters in all directions in the plane of the plate. How much
force is required to hold the plate against the water stream?
Answers: 1770 N

6-74 Consider steady developing laminar flow of water in
a constant-diameter horizontal discharge pipe attached to a
tank. The fluid enters the pipe with nearly uniform velocity V
and pressure P,. The velocity profile becomes parabolic
after a certain distance with a momentum correction factor
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of 2 while the pressure drops to P,. Obtain a relation for
the horizontal force acting on the bolts that hold the pipe
attached to the tank.

A

N
|—
Y

AAAl

FIGURE P6-74

6-75 A tripod holding a nozzle, which directs a 5-cm-
diameter stream of water from a hose, is shown in Fig. P6-75.
The nozzle mass is 10 kg when filled with water. The tripod
is rated to provide 1800 N of holding force. A firefighter was
standing 60 cm behind the nozzle and was hit by the noz-
zle when the tripod suddenly failed and released the nozzle.
You have been hired as an accident reconstructionist and,
after testing the tripod, have determined that as water flow
rate increased, it did collapse at 1800 N. In your final report
you must state the water velocity and the flow rate consistent
with the failure and the nozzle velocity when it hit the fire-
fighter. For simplicity, ignore pressure and momentum effects
in the upstream portion of the hose. Answers: 30.3 m/s,
0.0595 m3/s, 14.7 m/s

FIGURE P6-75

6-76 Consider an airplane with a jet engine attached to the
tail section that expels combustion gases at a rate of 18 kg/s
with a velocity of V = 300 m/s relative to the plane. Dur-
ing landing, a thrust reverser (which serves as a brake for the
aircraft and facilitates landing on a short runway) is lowered
in the path of the exhaust jet, which deflects the exhaust from
rearward to 150°. Determine (a) the thrust (forward force)
that the engine produces prior to the insertion of the thrust
reverser and (b) the braking force produced after the thrust
reverser is deployed.

Thrust
reverser

1
f

Thrust
reverser

300 m/s

FIGURE P6-76

= software, investigate the effect of thrust reverser
angle on the braking force exerted on the airplane. Let the
reverser angle vary from 0° (no reversing) to 180° (full
reversing) in increments of 10°. Tabulate and plot your results
and draw conclusions.

6-78E A spacecraft cruising in space at a constant veloc-
ity of 2000 ft/s has a mass of 25,000 Ibm. To slow down
the spacecraft, a solid fuel rocket is fired, and the combus-
tion gases leave the rocket at a constant rate of 150 lbm/s
at a velocity of 5000 ft/s in the same direction as the space-
craft for a period of 5 s. Assuming the mass of the spacecraft
remains constant, determine (a) the deceleration of the space-
craft during this 5-s period, (b) the change of velocity of the
spacecraft during this time period, and (c) the thrust exerted
on the spacecraft.

6-79 A 60-kg ice skater is standing on ice with ice skates
(negligible friction). She is holding a flexible hose (essen-
tially weightless) that directs a 2-cm-diameter stream of
water horizontally parallel to her skates. The water velocity
at the hose outlet is 10 m/s relative to the skater. If she is
initially standing still, determine (a) the velocity of the skater
and the distance she travels in 5 s and (b) how long it will
take to move 5 m and the velocity at that moment. Answers:
(a) 2.62 m/s, 6.54 m, (b) 4.4 s, 2.3 m/s

Ice skater '

10 m/s
/P /ﬁﬁD—Z
/‘ =ZCcm

FIGURE P6-79



6-80 A S-cm-diameter horizontal jet of water, with velocity
30 m/s, strikes the tip of a horizontal cone, which deflects the
water by 45° from its original direction. How much force is
required to hold the cone against the water stream?

6-81 Water is flowing into and discharging from a pipe
U-section as shown in Fig. P6-81. At flange (1), the total
absolute pressure is 200 kPa, and 55 kg/s flows into the
pipe. At flange (2), the total pressure is 150 kPa. At location
(3), 15 kg/s of water discharges to the atmosphere, which is
at 100 kPa. Determine the total x- and z-forces at the two
flanges connecting the pipe. Discuss the significance of grav-
ity force for this problem. Take the momentum-flux correc-
tion factor to be 1.03 throughout the pipes.

15 kg/s
of
—{ [*=3cm
@
l 40 kg/s <—§ [10cm
8
Z
| N
- 55 kg/s = { ? cm |
@®
FIGURE P6-81

6-82 Indiana Jones needs to ascend a 10-m-high building.
There is a large hose filled with pressurized water hanging

FIGURE P6-82
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down from the building top. He builds a square platform
and mounts four 4-cm-diameter nozzles pointing down at
each corner. By connecting hose branches, a water jet with
15-m/s velocity can be produced from each nozzle. Jones, the
platform, and the nozzles have a combined mass of 150 kg.
Determine (a) the minimum water jet velocity needed to raise
the system, (b) how long it takes for the system to rise 10 m
when the water jet velocity is 18 m/s and the velocity of
the platform at that moment, and (¢) how much higher will
the momentum raise Jones if he shuts off the water at the
moment the platform reaches 10 m above the ground. How
much time does he have to jump from the platform to the
roof?  Answers: (a) 17.1 m/s, (b) 4.37 s, 4.57 m/s, (c) 1.07 m,
0.933 s

6-83E An engineering student considers using a fan as a
levitation demonstration. She plans to face the box-enclosed
fan so the air blast is directed face down through a 3-ft-
diameter blade span area. The system weighs 5 1bf, and the
student will secure the system from rotating. By increasing
the power to the fan, she plans to increase the blade rpm and
air exit velocity until the exhaust provides sufficient upward
force to cause the box fan to hover in the air. Determine
(a) the air exit velocity to produce 5 1bf, (b) the volumetric
flow rate needed, and (¢) the minimum mechanical power
that must be supplied to the airstream. Take the air density to
be 0.078 1bm/ft3.

7
| | |

f
Povlbb by

FIGURE P6-83E

6-84 Nearly frictionless vertical guide rails maintain a
plate of mass m, in a horizontal position, such that it can
slide freely in the vertical direction. A nozzle directs a water
stream of area A against the plate underside. The water jet
splatters in the plate plane, applying an upward force against
the plate. The water flow rate m (kg/s) can be controlled.
Assume that distances are short, so the velocity of the rising jet
can be considered constant with height. (a) Determine the min-
imum mass flow rate 7, necessary to just levitate the plate
and obtain a relation for the steady-state velocity of the upward
moving plate for m > m_, . (b) At time t = 0, the plate is at
rest, and the water jet with m > m_;, is suddenly turned on.
Apply a force balance to the plate and obtain the integral that
relates velocity to time (do not solve).
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Guide
rails 7]

FIGURE P6-84

6-85 A walnut with a mass of 50 g requires a force of 200
N applied continuously for 0.002 s to be cracked. If walnuts
are to be cracked by dropping them from a high place onto a
hard surface, determine the minimum height required. Disre-
gard air friction.

6-86 A 7-cm diameter vertical water jet is injected upwards
by a nozzle at a speed of 15 m/s. Determine the maximum
weight of a flat plate that can be supported by this water jet
at a height of 2 m from the nozzle.

6-87 Repeat Prob. 6-86 for a height of 8 m from the nozzle.

6-88 Show that the force exerted by a liquid jet on a sta-
tionary nozzle as it leaves with a velocity V is proportional to
V2 or, alternatively, to m%. Assume the jet stream is perpen-
ticular to the incoming liquid flow line.

6-89 A soldier jumps from a plane and opens his parachute
when his velocity reaches the terminal velocity V. The para-
chute slows him down to his landing velocity of V. After the
parachute is deployed, the air resistance is proportional to the
velocity squared (i.e., F = kV?). The soldier, his parachute,
and his gear have a total mass of m. Show that k = mg/V?2

\

FIGURE P6-89
© Corbis RF

and develop a relation for the soldier’s velocity after he opens
the parachute at time ¢ = 0.
Vet Ve + (Ve — Ve 2%
V="V =
Vi+ Ve — (V, — Ve 2%

Answer:

6-90 A horizontal water jet with a flow rate of V and cross-
sectional area of A drives a covered cart of mass m, along a
level and nearly frictionless path. The jet enters a hole at the
rear of the cart and all water that enters the cart is retained,
increasing the system mass. The relative velocity between the
jet of constant velocity V; and the cart of variable velocity V
is V, — V. If the cart is initially empty and stationary when
the jet action is initiated, develop a relation (integral form is
acceptable) for cart velocity versus time.

FIGURE P6-90

6-91 Water accelerated by a nozzle enters the impeller of a
turbine through its outer edge of diameter D with a velocity
of V making an angle « with the radial direction at a mass
flow rate of m. Water leaves the impeller in the radial direc-
tion. If the angular speed of the turbine shaft is 72, show that
the maximum power that can be generated by this radial tur-
bine is W, = mnmDV sin a.

6-92 Water enters a two-armed lawn sprinkler along the
vertical axis at a rate of 75 L/s, and leaves the sprinkler noz-
zles as 2-cm diameter jets at an angle of 6 from the tangential
direction, as shown in Fig. P6-92. The length of each sprinkler

FIGURE P6-92



arm is 0.52 m. Disregarding any frictional effects, determine
the rate of rotation 7 of the sprinkler in rev/min for (a) 6 =
0°, (b) 6 = 30°, and (c) 6 = 60°.

6-93 _Reconsider Prob. 6-92. For the specified flow

== rate, investigate the effect of discharge angle 6
on the rate of rotation 72 by varying 6 from 0° to 90° in incre-
ments of 10°. Plot the rate of rotation versus 6, and discuss
your results.

6-94 A stationary water tank of diameter D is mounted on
wheels and is placed on a nearly frictionless level surface.
A smooth hole of diameter D, near the bottom of the tank
allows water to jet horizontally and rearward and the water
jet force propels the system forward. The water in the tank
is much heavier than the tank-and-wheel assembly, so only
the mass of water remaining in the tank needs to be consid-
ered in this problem. Considering the decrease in the mass of
water with time, develop relations for (a) the acceleration, (b)
the velocity, and (c) the distance traveled by the system as a
function of time.

6-95 An orbiting satellite has a mass of 3400 kg and is
traveling at a constant velocity of V. To alter its orbit, an
attached rocket discharges 100 kg of gases from the reac-
tion of solid fuel at a speed of 3000 m/s relative to the
satellite in a direction opposite V. The fuel discharge rate
is constant for 3s. Determine (a) the thrust exerted on the
satellite, (b) the acceleration of the satellite during this 3-s
period, and (c) the change of velocity of the satellite during
this time period.

v as Satellit >
f——x
FIGURE P6-95

6-96 Water enters a mixed flow pump axially at a rate of
0.3 m?/s and at a velocity of 7 m/s, and is discharged to the
atmosphere at an angle of 75° from the horizontal, as shown
in Fig. P6-96. If the discharge flow area is half the inlet
area, determine the force acting on the shaft in the axial
direction.
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FIGURE P6-96

6-97 Water flows steadily through a splitter as shown in
Fig. P6-97 with V, = 0.08 m%/s, V, = 0.05 m%s, D, = D, =
12 cm, D; = 10 cm. If the pressure readings at the inlet and
outlets of the splitter are P, = 100 kPa, P, = 90 kPa and
P, = 80 kPa, determine external force needed to hold the
device fixed. Disregard the weight effects.

Py

FIGURE P6-97

6-98 Water is discharged from a pipe through a 1.2-m long
5-mm wide rectangular slit underneath of the pipe. Water dis-
charge velocity profile is parabolic, varying from 3 m/s on one
end of the slit to 7 m/s on the other, as shown in Fig. P6-98.

(% j Slit width = 5 mm

Vi, =3m/s
Yy

Parabolic velocity distribution

' 12m '

V, =T7m/s

FIGURE P6-98
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Determine (a) the rate of discharge through the slit and (b) the
vertical force acting on the pipe due to this discharge process.

Fundamentals of Engineering (FE) Exam Problems

6-99 When determining the thrust developed by a jet
engine, a wise choice of control volume is

(a) Fixed control volume (b) Moving control volume

(c) Deforming control volume (d) Moving or deforming
control volume (e) None of these

6-100 Consider an airplane cruising at 850 km/h to the
right. If the velocity of exhaust gases is 700 km/h to the left
relative to the ground, the velocity of the exhaust gases rela-
tive to the nozzle exit is

(a) 1550 km/h (b)) 850 km/h  (¢) 700 km/h

(d) 350 km/h  (e) 150 km/h

6-101 Consider water flow through a horizontal, short
garden hose at a rate of 30 kg/min. The velocity at the inlet
is 1.5 m/s and that at the outlet is 14.5 m/s. Disregard the
weight of the hose and water. Taking the momentum-flux
correction factor to be 1.04 at both the inlet and the outlet,
the anchoring force required to hold the hose in place is
(@28N (B)BO6N (¢o)175N (d279N (e)433N

6-102 Consider water flow through a horizontal, short gar-
den hose at a rate of 30 kg/min. The velocity at the inlet is
1.5 m/s and that at the outlet is 11.5 m/s. The hose makes
a 180° turn before the water is discharged. Disregard the
weight of the hose and water. Taking the momentum-flux
correction factor to be 1.04 at both the inlet and the outlet,
the anchoring force required to hold the hose in place is
(a)7.6 N (b)284N (c)16.6 N (d)34.1N

(e) 119N

6-103 A water jet strikes a stationary vertical plate horizon-
tally at a rate of 5 kg/s with a velocity of 35 km/h. Assume
the water stream moves in the vertical direction after the
strike. The force needed to prevent the plate from moving
horizontally is

(@) 155N ((B)263N () 197N (d)342N (e)48.6N

6-104 Consider water flow through a horizontal, short
garden hose at a rate of 40 kg/min. The velocity at the inlet
is 1.5 m/s and that at the outlet is 16 m/s. The hose makes
a 90° turn to a vertical direction before the water is dis-
charged. Disregard the weight of the hose and water. Taking
the momentum-flux correction factor to be 1.04 at both the
inlet and the outlet, the reaction force in the vertical direction
required to hold the hose in place is

(@11.IN ((Bb)I10.IN (¢)93N (d272N (e)289N

6-105 Consider water flow through a horizontal, short pipe
at a rate of 80 kg/min. The velocity at the inlet is 1.5 m/s and
that at the outlet is 16.5 m/s. The pipe makes a 90° turn to
a vertical direction before the water is discharged. Disregard
the weight of the pipe and water. Taking the momentum-flux
correction factor to be 1.04 at both the inlet and the outlet,

the reaction force in the horizontal direction required to hold
the pipe in place is
(@737N (D)9I7TIN (c)992N () 122N (e) 153N

6-106 A water jet strikes a stationary horizontal plate verti-
cally at a rate of 18 kg/s with a velocity of 24 m/s. The mass
of the plate is 10 kg. Assume the water stream moves in the
horizontal direction after the strike. The force needed to pre-
vent the plate from moving vertically is

(@ 192N (b)240N (c)334 N (d)432N (e) 530N

6-107 The velocity of wind at a wind turbine is measured
to be 6 m/s. The blade span diameter is 24 m and the effi-
ciency of the wind turbine is 29 percent. The density of air is
1.22 kg/m?. The horizontal force exerted by the wind on the
supporting mast of the wind turbine is

(a) 2524 N () 3127 N (c) 3475 N (d) 4138 N

(e) 4313 N

6-108 The velocity of wind at a wind turbine is measured
to be 8 m/s. The blade span diameter is 12 m. The density of
air is 1.2 kg/m?. If the horizontal force exerted by the wind
on the supporting mast of the wind turbine is 1620 N, the
efficiency of the wind turbine is

(@)27.5% (b)31.7% (c)29.5% (d) 35.1% (e) 33.8%

6-109 The shaft of a turbine rotates at a speed of 800 rpm.
If the torque of the shaft is 350 N-m, the shaft power is

(a) 112 kW (b) 176 kW  (c) 293 kW  (d) 350 kW

(e) 405 kW

6-110 A 3-cm-diameter horizontal pipe attached to a sur-
face makes a 90° turn to a vertical upward direction before
the water is discharged at a velocity of 9 m/s. The horizon-
tal section is 5 m long and the vertical section is 4 m long.
Neglecting the mass of the water contained in the pipe, the
bending moment acting on the base of the pipe on the wall is
(a) 286 N-m (D) 229 N'm  (c¢) 207 N-m

(d) 175 N-m (e) 124 N'm

6-111 A 3-cm-diameter horizontal pipe attached to a sur-
face makes a 90° turn to a vertical upward direction before
the water is discharged at a velocity of 6 m/s. The horizon-
tal section is 5 m long and the vertical section is 4 m long.
Neglecting the mass of the pipe and considering the weight
of the water contained in the pipe, the bending moment act-
ing on the base of the pipe on the wall is

(@) 119 N-m (b)46.7N-m (c) 127 N'-m

(d) 104 N-m (e) 74.8 N-m

6-112 A large lawn sprinkler with four identical arms is
to be converted into a turbine to generate electric power by
attaching a generator to its rotating head. Water enters the
sprinkler from the base along the axis of rotation at a rate of
15 kg/s and leaves the nozzles in the tangential direction at a
velocity of 50 m/s relative to the rotating nozzle. The sprin-
kler rotates at a rate of 400 rpm in a horizontal plane. The
normal distance between the axis of rotation and the center of
each nozzle is 30 cm. Estimate the electric power produced.



(a) 5430 W (b) 6288 W (c) 6634 W (d) 7056 W
(e) 7875 W

6-113 Consider the impeller of a centrifugal pump with a
rotational speed of 900 rpm and a flow rate of 95 kg/min.
The impeller radii at the inlet and outlet are 7 cm and 16 cm,
respectively. Assuming that the tangential fluid velocity is
equal to the blade angular velocity both at the inlet and the
exit, the power requirement of the pump is

(@)83W (b)291W (c)409W (d) 756 W (e) 1125 W

6-114 Water enters the impeller of a centrifugal pump
radially at a rate of 450 L/min when the shaft is rotating
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at 400 rpm. The tangential component of absolute velocity
of water at the exit of the 70-cm outer diameter impeller is
55 m/s. The torque applied to the impeller is

(@) 144 N-m (b) 93.6 Nm (c) 187 N-m

(d) 112 N-m  (e) 235 N-m

Design and Essay Problem

6-115 Visit a fire station and obtain information about flow
rates through hoses and discharge diameters. Using this infor-
mation, calculate the impulse force to which the firefighters
are subjected when holding a fire hose.
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